Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Post-therapy damage in medulloblastoma patients can be mistaken for new tumors

17.11.2004


St. Jude scientists find that radiation and high-dose chemotherapy damage is usually transient but can mimic cancer and prompt needless additional treatment



Irradiation and high-dose chemotherapy used to treat two types of brain tumors--medulloblastoma and supratentorial PNET--can cause changes in the brain’s white matter that look like tumors when seen on MRI scans. This finding, by a team of investigators led by St. Jude Children’s Research Hospital, is published in the Nov. 15 issue of Journal of Clinical Oncology (JCO). White matter is the part of the brain composed of nerves that are covered in a pearly-white sheath. Much of the cerebral cortex, where high level thinking occurs, is made of white matter.

The study demonstrates that this damage, called white matter lesions (WMLs), can be mistaken for recurrent cancer, prompting physicians to treat the patient aggressively--and needlessly--with more radiation and chemotherapy. "Irradiation and high-dose chemotherapy are treatments we want to use as sparingly as possible," said Amar Gajjar, M.D., member of Hematology-Oncology and director of Neuro-oncology at St. Jude. "This new information represents an important caution sign for physicians who otherwise might assume that WMLs are actually tumors that need further treatment."


Gajjar is senior author of the JCO report, which is the first to describe both the finding and the actual incidence of early-onset WMLs--that is, how frequently these lesions occur in patients with medulloblastoma or PNET who have been treated with radiation and high-dose chemotherapy following surgery. The study is also the first to note the impact of such changes in white matter on intellectual outcome in children with brain tumors. Specifically, the study found that the presence of WMLs is associated with a decline in neurocognitive, or intellectual, function. "In the vast majority of children, the changes seen on MRI scans after treatment are WMLs and not cancer," says Maryam Fouladi, M.D., assistant member of St. Jude Hematology-Oncology and lead author of the report. "Physicians can follow up these initial findings with repeat MRI scans to determine whether the WMLs disappear. If they do disappear, then it wasn’t cancer and didn’t require treatment. But even though these changes tend to be only temporary, some children with these changes tends to develop permanent neurologic problems, such as difficulty swallowing."

The team followed 127 patients for up to 13 months after the start of treatment for brain cancer. During this time 22 of these patients developed WMLs following treatment for brain cancer. The WMLs disappeared in 16 patients (73 percent) within 23.5 months after being detected. In two patients the WMLs remained after 19 and 31 months, respectively. Two other patients developed cancer again while still showing evidence of WMLs. In the remaining patients the WML led to tissue breakdown. Patients with WMLs experienced a significant decline in estimated IQ and math scores.

The researchers concluded that, in patients with medulloblastoma or PNET who had been treated with irradiation and high-dose radiation, WMLs are usually short-lived and do not cause symptoms. However, these WMLs can mimic the early stages of tumor recurrence, and thus make it difficult for physicians to accurately diagnose the return of cancer.

Other authors of this report are Fred Laningham, James W. Langston, Larry E. Kun and Raymond K. Mulhern (St. Jude); Murali Chintagumpala, Charles W. McCluggage, Shaio Woo and Kevin Krull (Texas Children’s Hospital/Baylor College of Medicine, Houston); David Ashley (Royal Children’s Hospital, Melbourne, Australia); and Stewart J. Kellie (Children’s Hospital at Westmead, Sydney, Australia).

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>