Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Post-therapy damage in medulloblastoma patients can be mistaken for new tumors

17.11.2004


St. Jude scientists find that radiation and high-dose chemotherapy damage is usually transient but can mimic cancer and prompt needless additional treatment



Irradiation and high-dose chemotherapy used to treat two types of brain tumors--medulloblastoma and supratentorial PNET--can cause changes in the brain’s white matter that look like tumors when seen on MRI scans. This finding, by a team of investigators led by St. Jude Children’s Research Hospital, is published in the Nov. 15 issue of Journal of Clinical Oncology (JCO). White matter is the part of the brain composed of nerves that are covered in a pearly-white sheath. Much of the cerebral cortex, where high level thinking occurs, is made of white matter.

The study demonstrates that this damage, called white matter lesions (WMLs), can be mistaken for recurrent cancer, prompting physicians to treat the patient aggressively--and needlessly--with more radiation and chemotherapy. "Irradiation and high-dose chemotherapy are treatments we want to use as sparingly as possible," said Amar Gajjar, M.D., member of Hematology-Oncology and director of Neuro-oncology at St. Jude. "This new information represents an important caution sign for physicians who otherwise might assume that WMLs are actually tumors that need further treatment."


Gajjar is senior author of the JCO report, which is the first to describe both the finding and the actual incidence of early-onset WMLs--that is, how frequently these lesions occur in patients with medulloblastoma or PNET who have been treated with radiation and high-dose chemotherapy following surgery. The study is also the first to note the impact of such changes in white matter on intellectual outcome in children with brain tumors. Specifically, the study found that the presence of WMLs is associated with a decline in neurocognitive, or intellectual, function. "In the vast majority of children, the changes seen on MRI scans after treatment are WMLs and not cancer," says Maryam Fouladi, M.D., assistant member of St. Jude Hematology-Oncology and lead author of the report. "Physicians can follow up these initial findings with repeat MRI scans to determine whether the WMLs disappear. If they do disappear, then it wasn’t cancer and didn’t require treatment. But even though these changes tend to be only temporary, some children with these changes tends to develop permanent neurologic problems, such as difficulty swallowing."

The team followed 127 patients for up to 13 months after the start of treatment for brain cancer. During this time 22 of these patients developed WMLs following treatment for brain cancer. The WMLs disappeared in 16 patients (73 percent) within 23.5 months after being detected. In two patients the WMLs remained after 19 and 31 months, respectively. Two other patients developed cancer again while still showing evidence of WMLs. In the remaining patients the WML led to tissue breakdown. Patients with WMLs experienced a significant decline in estimated IQ and math scores.

The researchers concluded that, in patients with medulloblastoma or PNET who had been treated with irradiation and high-dose radiation, WMLs are usually short-lived and do not cause symptoms. However, these WMLs can mimic the early stages of tumor recurrence, and thus make it difficult for physicians to accurately diagnose the return of cancer.

Other authors of this report are Fred Laningham, James W. Langston, Larry E. Kun and Raymond K. Mulhern (St. Jude); Murali Chintagumpala, Charles W. McCluggage, Shaio Woo and Kevin Krull (Texas Children’s Hospital/Baylor College of Medicine, Houston); David Ashley (Royal Children’s Hospital, Melbourne, Australia); and Stewart J. Kellie (Children’s Hospital at Westmead, Sydney, Australia).

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>