Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HRT patches prevent the side-effect of osteoporosis when used as a treatment for advanced prostate cancer

15.11.2004


Men using the female estrogen hormone replacement therapy (HRT) patches as treatment for advanced prostate cancer suffer fewer side effects than with other treatments, according to a new study reported in the latest issue of the Journal of Urology (December 2004). Scientists at Hammersmith Hospitals NHS Trust and Imperial College London have already shown that HRT patches have considerable potential as prostate cancer therapy. For the first time they have additionally shown that this therapy, unlike other current treatments, prevents bone loss (osteoporosis) and instead causes an increase in bone density. These early studies confirm the considerable promise of estrogen hormone patches in advanced prostate cancer.



Prostate cancer is the most common male cancer in the UK, with about 20,000 cases diagnosed every year. Affecting men generally over the age of 45, prostate cancer grows slowly and may go undetected for many years. In some cases, the cancer can spread to bones and other organs of the body. The causes of prostate cancer are mainly unknown, but it requires the male hormone testosterone, produced in the testicles, to develop and grow. Treatment of advanced disease has resulted in therapies that reduce or remove testosterone from the body, via surgical or medical ‘castration.’

“Depriving the cancer of testosterone is the well accepted method of slowing down the progression of advanced prostate cancer,” comments lead author Mr Paul Abel, consultant urologist at Hammersmith Hospitals NHS Trust and Imperial College London. “The problem is that conventional current therapies which involve testosterone reduction can have serious side effects such as osteoporosis, which has not been fully appreciated until quite recently. This has led to reports of an increasing chance of bone fractures in these patients. Our study shows that oestrogen therapy delivered by skin patches not only controls prostate cancer, but prevents bone loss and in most cases, increases bone mass.”


Osteoporosis is a disease in which bones, particularly in the hip, spine and wrist, become fragile and more likely to break. The risk of hip fracture is serious, as it almost always requires hospitalisation and major surgery. It can impair a person’s ability to walk unassisted and may cause permanent disability. Spinal or vertebral fractures also have serious consequences, including severe back pain and deformity. Once viewed primarily as a women’s disease, osteoporosis is becoming increasingly important as prostate cancer sufferers survive for longer periods of time.

The study looked at 20 men with late stage prostate cancer who were given oestrogen hormone replacement therapy skin patches, and measured bone mass using an advanced imaging technique known as x-ray bone densiometry. Average increase in bone density was over 3%, with almost all patients gaining bone density to some extent. “Patients having conventional prostate cancer treatment can lose between 2 and 10% of their bone mass alone in the first year of treatment with an increasing risk of bone fracture the longer treatment continues,” explains Mr Abel, “whereas the increase in bone mass we have seen in this trial is by contrast promising news.”

Larger trials of the HRT patch therapy for prostate cancer are planned so that long-term effectiveness and side effects of this therapy can be clarified. They will take place before this treatment is offered routinely on the NHS.

The researchers are very encouraged by the results so far, which also hold considerable promise for healthcare cost reductions. Hormone patches cost about one tenth of conventional single treatments. “There is potential for a cost saving of over US$2 billion in advanced prostate cancer treatment if this therapy is rolled out worldwide," adds Mr Abel.

Simon Wilde | alfa
Further information:
http://www.hhnt.nhs.uk

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>