Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can we learn new tricks from an old drug in treating heart attacks?

11.11.2004


Bretylium’s unique effects may point to new concept of heart attacks



An "old" drug has unique benefits for patients with acute myocardial infarction (AMI; commonly known as heart attack), a finding that may contribute to a new understanding of how heart attacks develop, according to an article in the September/October American Journal of Therapeutics.

In the definitive report, Marvin Bacaner, M.D., University of Minnesota, describes the effects of the antiarrhythmic drug bretylium tosylate in preventing dangerous heart rhythm disorders and other complications after AMI.


Bretylium works by blocking release of the "fight or flight" hormone adrenaline, preventing activation of the sympathetic nervous system. Given intravenously, bretylium was once the mainstay of treatment for ventricular fibrillation and other heart rhythm disorders after AMI, although in recent years it has been largely replaced by other drugs.

However, Dr. Bacaner now believes that bretylium may offer unique advantages in heart attack treatment, and that it can be given effectively orally. In a study of 110 patients with AMI, potentially deadly arrhythmias developed in just 8 percent of patients treated with bretylium, compared to 65 percent of those treated with a different drug, liodcaine.

Bretylium’s adrenaline-blocking effect may lead to other benefits as well. In 31 percent of patients taking bretylium, the evolving heart attack did not develop into a "true" myocardial infarction, with permanent damage to the heart muscle. In contrast, 95 percent of patients treated with lidocaine developed a large heart attack.

A clue to the importance of blocking the sympathetic nervous system was that bretylium-treated patients remained warm and dry, with normal skin color. In contrast, patients receiving lidocaine were pale, sweaty, and cool, all signs of sympathetic nervous system activation.

Taken together, the findings suggest that the sympathetic nervous system plays an important role in the development of AMI. While clogged arteries are a major factor, Dr. Bacaner points out that it isn’t the only cause of the problem: some people have AMIs even though they have no coronary blockage, while others have blocked arteries but never experience a heart attack.

Sympathetic nervous system activation may be a previously underappreciated contributor to arrhythmias and heart muscle damage after heart attack. In the past, bretylium was available for intravenous use only. Dr. Bacaner has recently developed an oral form, which may offer a new approach to preventing arrhythmias as well as other dangerous complications.

"Dr. Bacaner is a true pioneer in the treatment of heart disease, and his development of an oral formulation of bretylium has the potential to extend the utility of discoveries made a half-century ago," says John C. Somberg, M.D., editor of the American Journal of Therapeutics. "Although further, rigorous ’proof of concept’ studies will be needed, Dr. Bacaner’s ideas about the importance of the sympathetic nervous system may offer a new paradigm for the understanding of heart disease."

Molly Portz | EurekAlert!
Further information:
http://www.umn.edu

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>