Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronauts Submit First Medical Research Paper from Space

09.11.2004


The first medical research paper submitted from the International Space Station (ISS) was published online today by the journal Radiology. The report documents the first ultrasound examination of the shoulder performed under the microgravity conditions of space flight.



Members of Expedition 9 crew aboard the ISS completed the study as part of the Advanced Diagnostic Ultrasound in Microgravity (ADUM) experiment. "It is with great pleasure that we offer to the journal Radiology the first paper ever submitted from the ISS," said the study’s lead author, ISS Science Officer E. Michael Fincke, M.S.

The ADUM experiment is being conducted to determine the accuracy of ultrasound in novel clinical conditions, to assess feasibility of ultrasound for monitoring in-flight musculoskeletal changes in crewmembers and to determine optimal training methods, including the use of remote guidance. While some aspects of the experiment are unique to space flight, Fincke believes the results are relevant to medical care on the ground. "The ADUM project has begun to provide a great and useful capability onboard the ISS with direct implications to improve life on Earth in the fields of emergency, rural and remote medicine," he said.


Astronauts experience a reduction in bone, muscle and tendon mass during prolonged exposure to microgravity, increasing their risk of injury. Strenuous physical labor during spacewalks and limited upper body and arm mobility in spacesuits make the shoulders particularly vulnerable. For this component of the ADUM experiment, the team evaluated the ability of a nonphysician crewmember on the ISS to obtain quality, shoulder musculokeletal data from another crewmember using real-time remote guidance. The crewmembers attended a 2½-hour ultrasound training session four months before launch and completed a one-hour computer-based training program while onboard the space station.

The astronauts used special positioning, including foot restraints and hand pressure to adjust the examination to a microgravity environment. During the exam, real-time ultrasound video of the shoulder was transmitted to experienced sonologists in the Telescience Center at the Johnson Space Center in Houston. The sonologists verbally guided the astronaut operator through probe manipulation and equipment adjustment to obtain optimal images for a complete rotator cuff evaluation. The exam was completed in less than 15 minutes. The downloaded images were subsequently reviewed by a musculoskeletal ultrasound specialist. Diagnostic image quality was excellent, and no indication of shoulder injury was found.

The findings indicate that fundamental training, combined with remote guidance from ultrasound experts, may be an effective method of performing diagnostic ultrasound exams in space, and may prove useful on Earth in situations where access to trained physicians and proper medical equipment is limited. "The remotely guided ultrasound concept, with trained first responders as operators, is a significant and clinically relevant advancement in space science, with profound ramifications for emergency or clinical care," Fincke said.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org
http://RSNA.org/radiologyjnl

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>