Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New source for heart bypass replacement blood vessels: Fibrin-based TEVs

09.11.2004


Fibrin gel matrix-based vessel ready for test transplantation after only two weeks in culture

The search for a stable, renewable source of blood vessels, especially for potential use in heart bypass surgery, has reached a milestone at the State University of New York at Buffalo. A multi-disciplinary team at SUNY Buffalo designed tissue engineered blood vessels (TEVs) using a matrix of vascular smooth muscle embedded in fibrin gels. After only two weeks in culture, the TEVs showed the strength and resiliency necessary for implantation. Even more exciting, 15 weeks after implantation, the fibrin-based TEVs "exhibited remarkable remodeling with considerable production of collagen and elastin, and significantly increased mechanical strength (and) physiological levels of blood flow and vasoreactivity," according to a paper published online in the American Journal of Physiology-Heart and Circulatory Physiology.

Currently, blood vessels are usually "harvested" from the patient’s own leg, often causing pain and discomfort, as well as extra surgical steps. So the need for a source of strong, yet elastic -- and physiologically responsive – replacement blood vessels has been the subject of laboratory searches and experimentation for decades.



The study, "Fibrin-based functional and implantable small diameter blood vessels," was written by Daniel D. Swartz and James A. Russell from the SUNY Buffalo Department of Physiology and Biophysics, and Stelios T. Andreadis of SUNY Buffalo’s Department of Chemical and Biological Engineering, Buffalo, New York.

Fibrin-based TEVs develop strength and reactivity after two weeks in culture

The researchers concluded that "fibrin-based TEVs hold significant promise for treatment of vascular disease and as a model system to address interesting questions with regards to blood vessel development and pathophysiology." Replacement of large (6-millimeter and larger) blood vessels has been successful using several synthetic materials, but smaller-diameter grafts usually failed due to thrombus or plaque formation. Various tissue-engineering approaches were developed using natural or synthetic biomaterials as scaffolds for cell growth. Biodegradable scaffolds using polyglycolic acid (PGA) have shown promise and collagen gels also worked, though 7mm collagen-based TEVs needed Dacron mesh reinforcement.

Prior to this study, the SUNY Buffalo researchers thought fibrin could be substituted for collagen as a scaffold for TEV because it shares high seeding efficiency (with smooth muscle cells, or SMCs) and uniform cell distribution. Indeed, in "contrast to collagen, fibrin stimulates synthesis of collagen and elastin and yields TEV constructs with improved mechanical properties, suggesting that fibrin may be a more appropriate scaffold for cardiovascular tissue engineering," they said.

In the current study, the SUNY Buffalo researchers took lamb vascular smooth muscle and endothelial cells to engineer small diameter (4mm) blood vessels, "which attained considerable mechanical strength and vasoractivity after only two weeks in culture." When the thrombin/fibrinogen solution was poured into the fibrin mold to start the process, it "gelled within 5-10 seconds." Tests using vasoactive receptor and nonreceptor substances showed that the fibrin-based TEVs exhibited an ability to expand and contract over time, similar to native vessels. This is a very important property that allows blood vessels to adapt to changes in blood flow rate.

Transplanted TEVs produce new collagen, elastin

Furthermore, after "a short time in culture, SMCs remodeled the extracellular matrix by substituting the fibrin gel with collagen." They found that after only about two weeks, the structure was ready for transplantation. "TEVs containing SMC and endothelial cells were implanted as interpositional grafts into the external jugular veins of 12-week-old lambs," Swartz et al. reported. "After implantation TEVs integrated very well with the cephalic and caudal ends of the jugular vein and remodeled successfully producing new collagen and elastin," they said. When the implants were removed after 15 weeks, there was no fibrin left; it had been completely replaced by collagen.

"Most importantly," the researchers wrote, fibrin-based "TEVs remained patent and demonstrated blood flow comparable with that of the control (natural, non-operated) jugular vein, suggesting that fibrin based blood vessels may provide a promising therapeutic modality and a good model system to study vascular development."

Next steps

According to Stelios Andreadis, the team is preparing to submit a grant application to the National Institutes of Health "to improve vessels’ mechanical strength." They will also seek to make the matrix stronger using recombinant DNA techniques and "engineer vessels from bone marrow-derived stem cells to provide a source of autologous cells for transplantation, and therefore avoid the use of native vessels as a cell source," Andreadis noted.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>