Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FDA buys technology that identifies drug toxicity to heart

05.11.2004


The University of Rochester Medical Center has a new tool to assess whether a medication might be harmful to the heart. The technology addresses a major health issue – drug toxicity – illustrated most recently by Merck’s voluntary withdrawal of Vioxx from the market after concerns that it may cause heart attacks and strokes.

Jean-Philippe Couderc, a biomedical engineer, developed a software program that provides a simpler, more accurate way to analyze the electrocardiograms (EKGs) of people who volunteer for clinical trials to test new drugs. The Food and Drug Administration purchased a copy of the technology, called COMPAS, which stands for Comprehensive Analysis of Repolarization Signal. The university hopes to license the copyrighted software to drug companies and other institutions involved in pre-market drug testing, said John Fahner-Vihtelic, deputy director of the Office of Technology Transfer.

"Our program provides a more reliable method to identify cardiovascular toxicity at a time when the scientific community is diligently seeking ways to address this problem," said Couderc, Ph.D., M.B.A., a research assistant professor in the Cardiology department and assistant director of the Heart Research Follow-up Program. "We are confident that COMPAS will be a valuable tool in the clinical trial and drug development arena."



More comprehensive testing of the heart’s reaction to medications is not only important for the success of any new drug, but it became an FDA requirement two years ago. To meet this standard, most companies that design Phase I and II clinical trials require thousands of volunteer subjects to undergo an extensive physical examination, which includes a review of a patient’s 24-hour EKG.

The patient’s EKG data is loaded onto a computer. Doctors look for abnormalities related to the QT interval. This is the split-second period that occurs from the time a heart beats or contracts, through its recovery phase. Drugs that prolong the recovery phase are of concern, because they can be toxic to the heart. COMPAS was designed to accurately identify EKG abnormalities, while taking into consideration other factors that may influence a person’s heart activity, such as eating, exercise or stress. COMPAS also assesses cardiac drug toxicity by automating the reading process.

Many drugs have been pulled from the market – or the FDA has limited their use – due to the tendency to prolong the QT interval. Usually this occurs, however, after millions of patients have already suffered serious side effects. The list includes antibiotics, weight loss and anti-psychotic medications, heartburn medications, and some cancer and heart disease therapies. (See www.QTdrugs.org for a partial listing.) Therefore, the goal among those who are developing and testing new treatments is to identify the cardiovascular risks to patients at the earliest possible stage.

The Medical Center’s Heart Research Follow-up Program is a national and international leader in the science of heart arrhythmias and a rare genetic condition associated with an abnormal QT interval, called the congenital Long QT Syndrome (LQTS). The university keeps an international registry for LQTS, and follows thousands of families who have this inherited condition. The genetic form of the QT prolongation syndrome is similar to the drug-induced syndrome, and Couderc’s work focuses on developing the tools to identify individuals with either form.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>