Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FDA buys technology that identifies drug toxicity to heart

05.11.2004


The University of Rochester Medical Center has a new tool to assess whether a medication might be harmful to the heart. The technology addresses a major health issue – drug toxicity – illustrated most recently by Merck’s voluntary withdrawal of Vioxx from the market after concerns that it may cause heart attacks and strokes.

Jean-Philippe Couderc, a biomedical engineer, developed a software program that provides a simpler, more accurate way to analyze the electrocardiograms (EKGs) of people who volunteer for clinical trials to test new drugs. The Food and Drug Administration purchased a copy of the technology, called COMPAS, which stands for Comprehensive Analysis of Repolarization Signal. The university hopes to license the copyrighted software to drug companies and other institutions involved in pre-market drug testing, said John Fahner-Vihtelic, deputy director of the Office of Technology Transfer.

"Our program provides a more reliable method to identify cardiovascular toxicity at a time when the scientific community is diligently seeking ways to address this problem," said Couderc, Ph.D., M.B.A., a research assistant professor in the Cardiology department and assistant director of the Heart Research Follow-up Program. "We are confident that COMPAS will be a valuable tool in the clinical trial and drug development arena."



More comprehensive testing of the heart’s reaction to medications is not only important for the success of any new drug, but it became an FDA requirement two years ago. To meet this standard, most companies that design Phase I and II clinical trials require thousands of volunteer subjects to undergo an extensive physical examination, which includes a review of a patient’s 24-hour EKG.

The patient’s EKG data is loaded onto a computer. Doctors look for abnormalities related to the QT interval. This is the split-second period that occurs from the time a heart beats or contracts, through its recovery phase. Drugs that prolong the recovery phase are of concern, because they can be toxic to the heart. COMPAS was designed to accurately identify EKG abnormalities, while taking into consideration other factors that may influence a person’s heart activity, such as eating, exercise or stress. COMPAS also assesses cardiac drug toxicity by automating the reading process.

Many drugs have been pulled from the market – or the FDA has limited their use – due to the tendency to prolong the QT interval. Usually this occurs, however, after millions of patients have already suffered serious side effects. The list includes antibiotics, weight loss and anti-psychotic medications, heartburn medications, and some cancer and heart disease therapies. (See www.QTdrugs.org for a partial listing.) Therefore, the goal among those who are developing and testing new treatments is to identify the cardiovascular risks to patients at the earliest possible stage.

The Medical Center’s Heart Research Follow-up Program is a national and international leader in the science of heart arrhythmias and a rare genetic condition associated with an abnormal QT interval, called the congenital Long QT Syndrome (LQTS). The university keeps an international registry for LQTS, and follows thousands of families who have this inherited condition. The genetic form of the QT prolongation syndrome is similar to the drug-induced syndrome, and Couderc’s work focuses on developing the tools to identify individuals with either form.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>