Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yellow Dates Bruising

04.11.2004


Optical technology can give the answer to when bruising happened and how. This can be important for cases of violent crime.

In court, a bruise can sometimes be important evidence. And the age of the bruise can be instrumental if a person is to be charged for the injuries in a crime. A cross-functional research team with the Norwegian University of Scence and Technology (NTNU) is currently developing a method, based on optical technology, for dating bruises. The method will be quick and inexpensive. It does not involve incision in the body, and it would provide a reasonably accurate measurement of bruise’s age.

Today, a bruise’s age is decided by the naked eye. The method is subjective, based on the coroner’s personal knowledge and experience. It is, however, impossible to decide exactly the age of the bruise. The dating will therefore be very approximate. International research shows that coroners date approximately every second bruise incorrectly, and that the margin of error can be up to a week. The bruises are divided into three categories: The fresh that have occured in the last one to two days, bruises that are a “few days old”, and bruising that occured “several days ago”. Technology that is more accurate in determining the age of the skin bruises will in some cases be of importance to the outcome of a trial.



A bruise lasts from one to two weeks. At first it tends to be reddish, then blue-violet, then green, yellow and finally brownish. Researchers use the natural breakdown of the red-coloured material in the blood, haemoglobin, to find the age of the bruise. After a few days, the haemoglobin breaks down into other chemical combinations – that have other colours. “It is the yellow coloured material, bilirubin, that we measure the amount of,” explains project leader Lise Lyngsnes Randeberg at NTNU.

-The naked eye will not perceive this colour until after about two days, while with reflection spectropy we reveal bilirubin after about one day. After about four days the bilirubin amount in the bruise is at its maximum, and afterwards gradually decreases.” The theoretical base for the technology has been developed by Professor Lars Svaasand. The technology is in principle simple: a lamp sends out a white light towards the bruise. White light contains all the colours of the rainbow. The light that reflects from the skin is measured with a spectrometer. More precisely, the spectrometer measures how much of the different colours are reflected back. This will show how far along the bruise has come in its path. From the reflected light, the researchers can measure the amount of blood in the bruise and the oxygen in the blood. Based on these factors, Randeberg is developing an algorithm that will be the key to analysing bruises.

It is possible that bruise technology can be used in several areas. Researchers say that this may come to be used to determine more precisely the time of a victim’s death. International firms in medical technology find this research very interesting, and the team hopes that in a few years the technological results of their work will be common in, among other places, hospital emergency rooms.

Lise Randeberg | alfa
Further information:
http://www.ime.ntnu.no/eng/

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>