Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Yellow Dates Bruising


Optical technology can give the answer to when bruising happened and how. This can be important for cases of violent crime.

In court, a bruise can sometimes be important evidence. And the age of the bruise can be instrumental if a person is to be charged for the injuries in a crime. A cross-functional research team with the Norwegian University of Scence and Technology (NTNU) is currently developing a method, based on optical technology, for dating bruises. The method will be quick and inexpensive. It does not involve incision in the body, and it would provide a reasonably accurate measurement of bruise’s age.

Today, a bruise’s age is decided by the naked eye. The method is subjective, based on the coroner’s personal knowledge and experience. It is, however, impossible to decide exactly the age of the bruise. The dating will therefore be very approximate. International research shows that coroners date approximately every second bruise incorrectly, and that the margin of error can be up to a week. The bruises are divided into three categories: The fresh that have occured in the last one to two days, bruises that are a “few days old”, and bruising that occured “several days ago”. Technology that is more accurate in determining the age of the skin bruises will in some cases be of importance to the outcome of a trial.

A bruise lasts from one to two weeks. At first it tends to be reddish, then blue-violet, then green, yellow and finally brownish. Researchers use the natural breakdown of the red-coloured material in the blood, haemoglobin, to find the age of the bruise. After a few days, the haemoglobin breaks down into other chemical combinations – that have other colours. “It is the yellow coloured material, bilirubin, that we measure the amount of,” explains project leader Lise Lyngsnes Randeberg at NTNU.

-The naked eye will not perceive this colour until after about two days, while with reflection spectropy we reveal bilirubin after about one day. After about four days the bilirubin amount in the bruise is at its maximum, and afterwards gradually decreases.” The theoretical base for the technology has been developed by Professor Lars Svaasand. The technology is in principle simple: a lamp sends out a white light towards the bruise. White light contains all the colours of the rainbow. The light that reflects from the skin is measured with a spectrometer. More precisely, the spectrometer measures how much of the different colours are reflected back. This will show how far along the bruise has come in its path. From the reflected light, the researchers can measure the amount of blood in the bruise and the oxygen in the blood. Based on these factors, Randeberg is developing an algorithm that will be the key to analysing bruises.

It is possible that bruise technology can be used in several areas. Researchers say that this may come to be used to determine more precisely the time of a victim’s death. International firms in medical technology find this research very interesting, and the team hopes that in a few years the technological results of their work will be common in, among other places, hospital emergency rooms.

Lise Randeberg | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>