Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yellow Dates Bruising

04.11.2004


Optical technology can give the answer to when bruising happened and how. This can be important for cases of violent crime.

In court, a bruise can sometimes be important evidence. And the age of the bruise can be instrumental if a person is to be charged for the injuries in a crime. A cross-functional research team with the Norwegian University of Scence and Technology (NTNU) is currently developing a method, based on optical technology, for dating bruises. The method will be quick and inexpensive. It does not involve incision in the body, and it would provide a reasonably accurate measurement of bruise’s age.

Today, a bruise’s age is decided by the naked eye. The method is subjective, based on the coroner’s personal knowledge and experience. It is, however, impossible to decide exactly the age of the bruise. The dating will therefore be very approximate. International research shows that coroners date approximately every second bruise incorrectly, and that the margin of error can be up to a week. The bruises are divided into three categories: The fresh that have occured in the last one to two days, bruises that are a “few days old”, and bruising that occured “several days ago”. Technology that is more accurate in determining the age of the skin bruises will in some cases be of importance to the outcome of a trial.



A bruise lasts from one to two weeks. At first it tends to be reddish, then blue-violet, then green, yellow and finally brownish. Researchers use the natural breakdown of the red-coloured material in the blood, haemoglobin, to find the age of the bruise. After a few days, the haemoglobin breaks down into other chemical combinations – that have other colours. “It is the yellow coloured material, bilirubin, that we measure the amount of,” explains project leader Lise Lyngsnes Randeberg at NTNU.

-The naked eye will not perceive this colour until after about two days, while with reflection spectropy we reveal bilirubin after about one day. After about four days the bilirubin amount in the bruise is at its maximum, and afterwards gradually decreases.” The theoretical base for the technology has been developed by Professor Lars Svaasand. The technology is in principle simple: a lamp sends out a white light towards the bruise. White light contains all the colours of the rainbow. The light that reflects from the skin is measured with a spectrometer. More precisely, the spectrometer measures how much of the different colours are reflected back. This will show how far along the bruise has come in its path. From the reflected light, the researchers can measure the amount of blood in the bruise and the oxygen in the blood. Based on these factors, Randeberg is developing an algorithm that will be the key to analysing bruises.

It is possible that bruise technology can be used in several areas. Researchers say that this may come to be used to determine more precisely the time of a victim’s death. International firms in medical technology find this research very interesting, and the team hopes that in a few years the technological results of their work will be common in, among other places, hospital emergency rooms.

Lise Randeberg | alfa
Further information:
http://www.ime.ntnu.no/eng/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>