Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat buildup found in hearts of obese or diabetic heart failure patients

03.11.2004


Diabetic or obese patients suffering advanced heart failure have higher levels of fat embedded in their hearts and greater molecular evidence of haywire cardiac metabolism, a research team led by cardiologists at The University of Texas Medical School at Houston reports in the November issue of the FASEB Journal.



Heart failure, progressive and potentially fatal weakening of the heart muscle, is associated with both obesity and diabetes, but the mechanisms by which damage occurs are not well-understood, said senior author Heinrich Taegtmeyer, M.D., Ph.D., professor of cardiology. "In cardiology, we’ve long been concerned about fat accumulating in the artery walls and blocking the flow of blood to the heart. What we are finding now is that the buildup of fat doesn’t stop in the blood vessels, it’s actually worse in heart muscle cells," Taegtmeyer said. "We also report in this paper that diabetes and obesity appear to cause metabolic irregularities in the heart tissue."

Gene expression and protein findings in the paper provide potential long-term targets for treating heart failure, which afflicts 5 million U.S. patients annually. Researchers examined 27 failing hearts that were removed during transplants and compared them to eight donor hearts that were not failing but were otherwise unsuitable for transplant. Eight of the failing hearts (30 percent) showed high levels of triglycerides – a fat storage and transport molecule. Levels of triglycerides in failing hearts were four times the level in obese or diabetic patients as they were in non-failing hearts.


The research team associated this buildup of triglycerides in the heart muscle, called lipotoxicity, with dysfunctional expression of genes related to the heart’s metabolism of fatty acids, its contractile function, and an inflammatory protein known to contribute to insulin resistance. The human results track with a rat model of the lipotoxic heart, which has been shown to cause improper cardiac contraction in the rodents, said first author Saumya Sharma, M.D., a cardiology fellow and researcher in Taegtmeyer’s lab.

A normal heart derives two-thirds of its energy requirement by metabolizing fatty acids, which are carried in triglycerides, Sharma said. Lipotoxic hearts store some triglycerides in the muscle tissue rather than metabolizing them. In obese people, Taegtmeyer and his team theorize that this occurs because the person’s fat cells, which capture and store excess triglycerides, fill up. Because people have a set number of fat cells, once they are full, excess fat lodges in muscle tissue, where it wreaks molecular havoc. "The heart is a muscle, too, and it’s not spared from this onslaught of fat," Taegtmeyer explained. "The heart is designed to contract, but if lipids (fat) displace its contractile proteins, that results in impaired heart function."

Taegtmeyer and colleagues are testing this hypothesis among obese patients who have elected to have bariatric surgery (surgical reduction of stomach size). Patients in the study volunteer to have their cardiac function analyzed and to provide a small sample of thigh muscle tissue before and after their surgery. Taegtmeyer’s team will then assess whether weight loss after surgery results in improved heart function and decreased levels of lipids in muscle tissue.

Earlier research by Taegtmeyer showed that diabetes causes toxic levels of lipids and glucose to build up in the heart.

Scott Merville | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>