Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diabetes drug works by enhancing fat cell energy production


Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone

Energy homeostasis is controlled by a complex series of cellular and hormonal interactions. White fat tissue has been shown by mouse-knockout studies and the identification of fat-specific secreted factors to be central to this process. Drugs for type 2 diabetes that enhance sensitivity to insulin, such as rosiglitazone, work through mechanisms that involve fat. Cell culture work has indicated that rosiglitazone alters the mitochondria of fat cells, both in their structural features and in the types of proteins they produce. Mitochondria are what make the cell’s energy.

Silvia Corvera and colleagues, from University of Massachusetts Medical School, examined in live animals the effects of rosiglitazone through studies on white fat tissue in an obesity mouse model called ob/ob mice. The authors found that at the onset of obesity in the ob/ob mice, there was decreased expression of about 50% of the mitochondrial protein genes. When these mice were treated with rosiglitazone, half of these genes showed increased expression. Additionally, the mitochondria in the white fat cells of treated ob/ob mice had increased size and altered structure.

The oxygen consumption, reflecting energy use, of these cells was also significantly higher. The work here provides live animal evidence that rosiglitazone treatment works by modifying mitochondrial structure and increasing white fat cell tissue energy, which indicates that increased lipid utilization by fat cells improves insulin sensitivity and alters whole-body energy homeostasis.

Laurie Goodman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>