Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA and Univ. of Utah researchers identify how a hormone regulates iron

29.10.2004


Findings may lead to treatments for hemochromatosis and anemia of chronic disease

A new UCLA and University of Utah study found how a hormone called hepcidin regulates the iron uptake from the diet and its distribution in the body. The study may help develop future treatments for chronic anemia and for diseases of iron overload, such as hemochromatosis. Published online in the journal Science this week, researchers discovered that the hormone hepcidin controls ferroportin, an iron-transporting molecule on the surface of specific cells that contain iron. Hepcidin signals ferroportin not to release iron into the blood stream.

Researchers realized that if there isn’t enough hepcidin to regulate ferroportin, too much iron is taken up from the digestive system into the body, which can lead to hemochromatosis, a major genetic disorder affecting about a million people in the United States. "For the first time we understand what happens in the disease hemochromatosis," said Dr. Tomas Ganz, Ph.D., M.D., one of the study’s principal investigators and professor of medicine and pathology at the David Geffen School of Medicine at UCLA. "We knew that ferroportin is necessary to help release iron into the bloodstream, but didn’t know that hepcidin directly regulates this activity."



Ganz adds that too much hepcidin present in the body -- which can occur in patients with infections or with inflammatory diseases such as rheumatoid arthritis or inflammatory bowel disease -- often results in not enough iron released into the blood stream causing chronic anemia. "We have defined how the hormone hepcidin regulates the accumulation of iron by the body," says Jerry Kaplan, Ph.D., one of the study’s principal authors and a professor of pathology and assistant vice president for basic science at the University of Utah Health Sciences Center. "This has implications for understanding both diseases that are caused by not enough iron and diseases that are caused by too much iron."

In a cell culture, researchers added hepcidin to cells and found that hepcidin attaches to ferroportin and causes ferroportin to be swallowed and destroyed by the cells. Without ferroportin on the surface to release the iron, the mineral remains trapped inside the cell. "Our findings may lead to new interventions for specific diseases," said Dr. Elizabeta Nemeth, the study’s first author and assistant research professor, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA. "Our next step will be to look more closely at molecular interactions of hepcidin and ferroportin in order to be able to develop treatment drugs."

Nemeth says that a form of hepcidin may be developed that people with hemochromatosis could inject to help reduce the amount of iron taken up by the body – similar to the use of insulin to control the amount of sugar in the body. For patients with anemia associated with too much hepcidin, Ganz adds that development of drugs to block hepcidin from binding to ferroportin might help release more iron into the body.

Hemochromatosis is the most common genetic disease in the United States according to the Centers for Disease Control. One in 100-200 people have a double mutation of a gene that puts them at risk for developing hemochromatosis, which causes an accumulation of excess iron in body tissues. Anemia of chronic disease is second only to iron-deficiency as a cause of anemia worldwide.

The National Institutes of Health funded the study. Other authors include: Marie S. Tuttle, Julie Powelson, Michael B. Vaughn and Diane McVey Ward from the Department of Pathology, School of Medicine, University of Utah; and Adriana Donovan, Department of Hematology, Children’s Hospital, Boston, MA.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>