Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Understanding Of Role Of Breast Cancer Gene In Normal Function And Disease

29.10.2004


Researchers at the Medical Research Council (MRC) Cancer Cell Unit, Cambridge have gained an important new insight into the role of the breast cancer gene known as BRCA2. It appears to have a key function in cell division which needs to happen accurately for normal cell reproduction and repair, otherwise disease occurs. The findings are published today (29 Friday October 2004) in the journal Science.



Around 30 to 50 per cent of breast cancers that run in families are thought to occur because the BRCA2 gene is not working. People who inherit defective BRCA2 are not only more susceptible to breast cancer, but also have a higher risk of developing cancers of the ovary, pancreas and prostate. The researchers found that where there was a mutation in the BRCA2 gene, cells failed to divide accurately and acquired an incorrect number of chromosomes.*

The final critical step where cells divide is called cytokinesis. This is where a cell separates into two to create replicas of itself known as ‘daughter cells’. It is at this point that a full set of chromosomes is put together for each of the new cells. Any malfunction in this process can result in cells having too few or too many chromosomes or abnormalities, which have implications for disease. Since the discovery of the breast cancer susceptibility genes BRCA1 and BRCA2, researchers have sought to identify exactly why mutations in these genes lead to breast cancer. Understanding the role BRCA2 has in cell division and chromosome separation sheds light on this mechanism and what happens when it goes wrong.


The research team which includes Medical Research Council and Cancer Research UK (CR-UK) scientists was led by Professor Ashok Venkitaraman, Deputy Director of MRC Cancer Cell Unit and member of the University of Cambridge CR-UK Department of Oncology. Professor Venkitaraman said: “Our research shows that BRCA2 works to link cell division with proper chromosome separation. Cancer cells frequently gain or lose chromosomes, but how this happened was not known until now. “We already know that cancer cells with highly abnormal numbers of chromosomes often respond poorly to therapy so it is important to understand how this comes about. In future it may be possible to use the results of our study to come up solutions that form the basis of effective new treatments for this type of tumour.

Matthew Daniels, one of the research team added: “It is possible that similar problems occur in non-hereditary cancers. A greater understanding of these processes will help us work towards prevention and better management of cancers.”

The research was funded by the MRC, CR-UK and an AstraZeneca studentship to Cambridge University Clinical School.

*Chromosomes are the structures in the cell which carry our genes.

| alfa
Further information:
http://www.mrc.ac.uk
http://www.cam.ac.uk

More articles from Health and Medicine:

nachricht Researchers show p300 protein may suppress leukemia in MDS patients
28.03.2017 | University of Miami Miller School of Medicine

nachricht When writing interferes with hearing
28.03.2017 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>