Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Understanding Of Role Of Breast Cancer Gene In Normal Function And Disease

29.10.2004


Researchers at the Medical Research Council (MRC) Cancer Cell Unit, Cambridge have gained an important new insight into the role of the breast cancer gene known as BRCA2. It appears to have a key function in cell division which needs to happen accurately for normal cell reproduction and repair, otherwise disease occurs. The findings are published today (29 Friday October 2004) in the journal Science.



Around 30 to 50 per cent of breast cancers that run in families are thought to occur because the BRCA2 gene is not working. People who inherit defective BRCA2 are not only more susceptible to breast cancer, but also have a higher risk of developing cancers of the ovary, pancreas and prostate. The researchers found that where there was a mutation in the BRCA2 gene, cells failed to divide accurately and acquired an incorrect number of chromosomes.*

The final critical step where cells divide is called cytokinesis. This is where a cell separates into two to create replicas of itself known as ‘daughter cells’. It is at this point that a full set of chromosomes is put together for each of the new cells. Any malfunction in this process can result in cells having too few or too many chromosomes or abnormalities, which have implications for disease. Since the discovery of the breast cancer susceptibility genes BRCA1 and BRCA2, researchers have sought to identify exactly why mutations in these genes lead to breast cancer. Understanding the role BRCA2 has in cell division and chromosome separation sheds light on this mechanism and what happens when it goes wrong.


The research team which includes Medical Research Council and Cancer Research UK (CR-UK) scientists was led by Professor Ashok Venkitaraman, Deputy Director of MRC Cancer Cell Unit and member of the University of Cambridge CR-UK Department of Oncology. Professor Venkitaraman said: “Our research shows that BRCA2 works to link cell division with proper chromosome separation. Cancer cells frequently gain or lose chromosomes, but how this happened was not known until now. “We already know that cancer cells with highly abnormal numbers of chromosomes often respond poorly to therapy so it is important to understand how this comes about. In future it may be possible to use the results of our study to come up solutions that form the basis of effective new treatments for this type of tumour.

Matthew Daniels, one of the research team added: “It is possible that similar problems occur in non-hereditary cancers. A greater understanding of these processes will help us work towards prevention and better management of cancers.”

The research was funded by the MRC, CR-UK and an AstraZeneca studentship to Cambridge University Clinical School.

*Chromosomes are the structures in the cell which carry our genes.

| alfa
Further information:
http://www.mrc.ac.uk
http://www.cam.ac.uk

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>