Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Adults with dyslexia can improve with phonics-based instruction


New research shows that phonics-based instruction can actually change brain activity in adults with dyslexia, resulting in significant improvements in reading. The findings from a collaborative study by Wake Forest University Baptist Medical Center and Georgetown University Medical Center were reported today in the journal Neuron. "With about 112 hours of phonic-based instruction, adults with dyslexia had significant improvements in reading and changes in brain activity while reading," said Lynn Flowers, Ph.D., senior researcher, from Wake Forest Baptist. "We know that dyslexia is not something children outgrow, and our findings suggest that it’s never too late for instruction to overcome this disability."

This was the first independent research study of whether phonics-based instruction is effective in adults with dyslexia and the first to measure whether the instruction would result in changes in brain activation. Dyslexia, or difficulty learning to read, has been associated with underactivity in areas of the brain that process language and "decode" words into groups of letters that are associated with meaningful sound patterns. The research involved 19 adults with dyslexia and 19 typical readers without dyslexia. The mean age of participants, who were mostly from the Winston-Salem area, was 42.5.

Dyslexia is the most common learning disability and affects about 10 percent of the population. "A huge number of adults have this problem, so it’s important to know whether something can be done to treat it," said Flowers, an assistant professor of neurology. "Adults with dyslexia can suffer significant financial and emotional consequences." The researchers used functional magnetic resonance imaging (fMRI) – which shows brain activation during a task – to verify whether adults with dyslexia process language differently from typical readers. The testing – performed while participants completed a phonics task – showed that several areas of the brain, predominantly on the left side, were less active in participants with dyslexia. These areas are associated with processing phonetic sounds and recognizing familiar objects. "This verified our findings and those of others and confirms that dyslexia is biologically based," said Flowers.

The researchers then tested to see if instruction in phonics would improve reading ability and produce changes in brain activation. Half of the participants with dyslexia received phonics-based instruction 15 hours a week for eight weeks. Before the instruction began, they completed pen-and-paper tests to measure their reading ability and underwent fMRI. After the instruction, they completed a second round of written and fMRI testing.

The written tests showed that participants who received instruction made gains of between six and 23 percent in text reading, phonetic awareness and the ability to "decode" the written word. fMRI testing revealed that the improvements in reading corresponded to increased activity in areas of the brain associated with phonetic processing, being able to associate a symbol with a sound and being able to recognize whether a string of letters represents a word.

Flowers said the gains in reading ability were significant enough to make a difference in the everyday lives of participants. "One woman who had never read a book now sets her alarm clock early to get up and read before going to work," she said. Flowers said phonics-based instruction was chosen for the research because it has proven successful in children. She said the researchers are currently working to see if a less intensive program will have the same benefits. She recommends that adult dyslexics who want to get reading instruction select a phonics-based program that focuses on the structure of language and how language works. It should also involve multiple senses, including how a letter looks, sounds and feels.

Flowers’ co-authors were Guinevere Eden, D. Phil., Karen Jones, Katherine Cappell, Lynn Gareau, Thomas Zeffiro, M.D., Ph.D., Nichole Dietz, Ph.D, and John Agnew, Ph.D., from Georgetown, and Frank B. Wood, Ph.D., from Wake Forest Baptist.

Karen Richardson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>