Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adults with dyslexia can improve with phonics-based instruction

28.10.2004


New research shows that phonics-based instruction can actually change brain activity in adults with dyslexia, resulting in significant improvements in reading. The findings from a collaborative study by Wake Forest University Baptist Medical Center and Georgetown University Medical Center were reported today in the journal Neuron. "With about 112 hours of phonic-based instruction, adults with dyslexia had significant improvements in reading and changes in brain activity while reading," said Lynn Flowers, Ph.D., senior researcher, from Wake Forest Baptist. "We know that dyslexia is not something children outgrow, and our findings suggest that it’s never too late for instruction to overcome this disability."

This was the first independent research study of whether phonics-based instruction is effective in adults with dyslexia and the first to measure whether the instruction would result in changes in brain activation. Dyslexia, or difficulty learning to read, has been associated with underactivity in areas of the brain that process language and "decode" words into groups of letters that are associated with meaningful sound patterns. The research involved 19 adults with dyslexia and 19 typical readers without dyslexia. The mean age of participants, who were mostly from the Winston-Salem area, was 42.5.

Dyslexia is the most common learning disability and affects about 10 percent of the population. "A huge number of adults have this problem, so it’s important to know whether something can be done to treat it," said Flowers, an assistant professor of neurology. "Adults with dyslexia can suffer significant financial and emotional consequences." The researchers used functional magnetic resonance imaging (fMRI) – which shows brain activation during a task – to verify whether adults with dyslexia process language differently from typical readers. The testing – performed while participants completed a phonics task – showed that several areas of the brain, predominantly on the left side, were less active in participants with dyslexia. These areas are associated with processing phonetic sounds and recognizing familiar objects. "This verified our findings and those of others and confirms that dyslexia is biologically based," said Flowers.



The researchers then tested to see if instruction in phonics would improve reading ability and produce changes in brain activation. Half of the participants with dyslexia received phonics-based instruction 15 hours a week for eight weeks. Before the instruction began, they completed pen-and-paper tests to measure their reading ability and underwent fMRI. After the instruction, they completed a second round of written and fMRI testing.

The written tests showed that participants who received instruction made gains of between six and 23 percent in text reading, phonetic awareness and the ability to "decode" the written word. fMRI testing revealed that the improvements in reading corresponded to increased activity in areas of the brain associated with phonetic processing, being able to associate a symbol with a sound and being able to recognize whether a string of letters represents a word.

Flowers said the gains in reading ability were significant enough to make a difference in the everyday lives of participants. "One woman who had never read a book now sets her alarm clock early to get up and read before going to work," she said. Flowers said phonics-based instruction was chosen for the research because it has proven successful in children. She said the researchers are currently working to see if a less intensive program will have the same benefits. She recommends that adult dyslexics who want to get reading instruction select a phonics-based program that focuses on the structure of language and how language works. It should also involve multiple senses, including how a letter looks, sounds and feels.

Flowers’ co-authors were Guinevere Eden, D. Phil., Karen Jones, Katherine Cappell, Lynn Gareau, Thomas Zeffiro, M.D., Ph.D., Nichole Dietz, Ph.D, and John Agnew, Ph.D., from Georgetown, and Frank B. Wood, Ph.D., from Wake Forest Baptist.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>