Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adults with dyslexia can improve with phonics-based instruction

28.10.2004


New research shows that phonics-based instruction can actually change brain activity in adults with dyslexia, resulting in significant improvements in reading. The findings from a collaborative study by Wake Forest University Baptist Medical Center and Georgetown University Medical Center were reported today in the journal Neuron. "With about 112 hours of phonic-based instruction, adults with dyslexia had significant improvements in reading and changes in brain activity while reading," said Lynn Flowers, Ph.D., senior researcher, from Wake Forest Baptist. "We know that dyslexia is not something children outgrow, and our findings suggest that it’s never too late for instruction to overcome this disability."

This was the first independent research study of whether phonics-based instruction is effective in adults with dyslexia and the first to measure whether the instruction would result in changes in brain activation. Dyslexia, or difficulty learning to read, has been associated with underactivity in areas of the brain that process language and "decode" words into groups of letters that are associated with meaningful sound patterns. The research involved 19 adults with dyslexia and 19 typical readers without dyslexia. The mean age of participants, who were mostly from the Winston-Salem area, was 42.5.

Dyslexia is the most common learning disability and affects about 10 percent of the population. "A huge number of adults have this problem, so it’s important to know whether something can be done to treat it," said Flowers, an assistant professor of neurology. "Adults with dyslexia can suffer significant financial and emotional consequences." The researchers used functional magnetic resonance imaging (fMRI) – which shows brain activation during a task – to verify whether adults with dyslexia process language differently from typical readers. The testing – performed while participants completed a phonics task – showed that several areas of the brain, predominantly on the left side, were less active in participants with dyslexia. These areas are associated with processing phonetic sounds and recognizing familiar objects. "This verified our findings and those of others and confirms that dyslexia is biologically based," said Flowers.



The researchers then tested to see if instruction in phonics would improve reading ability and produce changes in brain activation. Half of the participants with dyslexia received phonics-based instruction 15 hours a week for eight weeks. Before the instruction began, they completed pen-and-paper tests to measure their reading ability and underwent fMRI. After the instruction, they completed a second round of written and fMRI testing.

The written tests showed that participants who received instruction made gains of between six and 23 percent in text reading, phonetic awareness and the ability to "decode" the written word. fMRI testing revealed that the improvements in reading corresponded to increased activity in areas of the brain associated with phonetic processing, being able to associate a symbol with a sound and being able to recognize whether a string of letters represents a word.

Flowers said the gains in reading ability were significant enough to make a difference in the everyday lives of participants. "One woman who had never read a book now sets her alarm clock early to get up and read before going to work," she said. Flowers said phonics-based instruction was chosen for the research because it has proven successful in children. She said the researchers are currently working to see if a less intensive program will have the same benefits. She recommends that adult dyslexics who want to get reading instruction select a phonics-based program that focuses on the structure of language and how language works. It should also involve multiple senses, including how a letter looks, sounds and feels.

Flowers’ co-authors were Guinevere Eden, D. Phil., Karen Jones, Katherine Cappell, Lynn Gareau, Thomas Zeffiro, M.D., Ph.D., Nichole Dietz, Ph.D, and John Agnew, Ph.D., from Georgetown, and Frank B. Wood, Ph.D., from Wake Forest Baptist.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>