Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher Radiation Doses Help Some Lung Cancer Patients Live Longer

28.10.2004


Treating patients with advanced non-small cell lung cancer more aggressively by giving them higher doses of radiation helps keep the disease from spreading and allows some patients to live longer, according to a new study published in the November 1, 2004, issue of the International Journal of Radiation Oncology*Biology*Physics, the official journal of ASTRO, the American Society for Therapeutic Radiology and Oncology.



An estimated 45,000 to 50,000 people were diagnosed with locally advanced non-small cell lung cancer in 2003 with an expected five-year survival rate of only 10 to 20 percent, according to the study. Although adding chemotherapy can help some patients live longer, in general survival rates are very low, particularly in comparison to other cancers.

In the study, 72 patients with stage III (or advanced) non-small cell lung cancer were split into two groups and treated with different doses of three-dimensional conformal radiotherapy in addition to chemotherapy. Of the 37 patients in the first group treated with a low dose of radiation therapy, 61 percent of the patients saw their cancer spread during the first year. By the second year, 76 percent of the patients had suffered a relapse. In contrast, of the 35 patients in the second group who were treated with a higher dose of radiation therapy, 27 percent of patients saw their cancer come back within the first year and 47 percent had suffered a relapse by the second year.


Patients who received the higher dose of radiation also typically lived longer than their counterparts receiving the lower dose of radiation. The median survival time was 15 months for patients in the low-dose group compared to 20 months for patients who received the higher dose. “Although breast cancer and prostate cancer are more prevalent, lung cancer remains the leading cause of cancer death among men and women,” said Ramesh Rengan, M.D., Ph.D., lead author of the study and a radiation oncologist in the Department of Radiation Oncology at Memorial Sloan-Kettering Cancer Center in New York. “This study shows that higher doses of radiation can help patients with advanced lung cancer to live longer. I’m hopeful that this will help us eventually find a way to cure more patients of this deadly disease.”

For more information on radiation therapy for lung cancer, please visit www.astro.org/patient/treatment_information/ for a free brochure.

To arrange an interview with Dr. Rengan or for a copy of the study “Improved Local Control With Higher Doses of Radiation in Large-Volume Stage III Non-small Cell Lung Cancer,” please contact Nick Lashinsky at nickl@astro.org or 1-800-962-7876.

ASTRO is the largest radiation oncology society in the world, with more than 8,000 members who specialize in treating patients with radiation therapies. As a leading organization in radiation oncology, biology and physics, the Society is dedicated to the advancement of the practice of radiation oncology by promoting excellence in patient care, providing opportunities for educational and professional development, promoting research and disseminating research results and representing radiation oncology in a rapidly evolving socioeconomic healthcare environment.

Beth Bukata | EurekAlert!
Further information:
http://www.astro.org/patient/treatment_information/
http://www.astro.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>