Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal study suggests safer immunization approach to Alzheimer’s

27.10.2004


Alzheimer’s, immunization, plaques

Researchers at the University of Illinois at Chicago have had preliminary success with a method of immunization intended to dissolve the plaques in brain tissue that are associated with Alzheimer’s disease. When injected directly into the brain of mice, antibodies against a plaque protein retarded growth of the plaques by up to two months. No adverse side effects were found. "By injecting the antibodies directly into the brain, we were able to circumvent the problems others have encountered in developing a vaccine for this terrible disease," said Neelima Chauhan, research assistant professor in the UIC College of Medicine.

Results of the study appear in the current issue of the Journal for Neuroscience Research. Two methods of immunization have been tried in Alzheimer’s disease. In the first, called active immunization, researchers inject the antigen itself -- pieces of the sticky beta amyloid protein that constitutes the plaques -- into patients to spur the production of antibodies that should neutralize the protein and prevent it from accumulating in brain cells.



But after success in animals, clinical trials of active immunization failed when 6 to 8 percent of the patients in the study developed meningocephalitis, an inflammation of the tissue surrounding the brain. Passive immunization did not even succeed in animal studies. In this method, researchers inject ready-made antibodies, rather than the antigen, into the animal. But high concentrations of the antibodies are required to be effective, and the large doses were found to cause hemorrhaging and inflammation.

Aware of such problems, Chauhan tried a modified passive immunization method in laboratory mice that are used as a model for the disease. In a single injection, she delivered the antibody directly into the third ventricle, a narrow cavity located between the two hemispheres of the brain, and then examined the animals’ brain tissue at one, four and eight weeks. Since the antibody did not have to circulate throughout the mouse’s body where it might be absorbed, Chauhan was able to use a smaller dose than in other passive immunization studies.

At one and four weeks, the density of amyloid protein was 67 percent less than in control animals. But by eight weeks, with no further antibody injections, the protein had again accumulated. The younger the animals were, the slower the plaques regrew. No side effects, such as hemorrhaging or inflammation, were evident. "The results suggest that periodic administration of antibodies directly into the brain might offer a safer method for treating Alzheimer’s," Chauhan said. "The vaccine reduces the accumulation of amyloid proteins for at least four weeks, providing a window during which other treatments could be used to prevent the formation of new plaques."

Alzheimer’s is an age-associated degenerative neurological disease and the leading cause of dementia in older people. An estimated 10 percent of Americans over the age of 65 and half of those over age 85 have Alzheimer’s. Currently, more than 4 million Americans suffer from the disease and the number is projected to balloon to 10 to 15 million over the next several decades. Alzheimer’s is now the third most expensive disease to treat in the United States, costing close to $100 billion annually.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>