Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal study suggests safer immunization approach to Alzheimer’s

27.10.2004


Alzheimer’s, immunization, plaques

Researchers at the University of Illinois at Chicago have had preliminary success with a method of immunization intended to dissolve the plaques in brain tissue that are associated with Alzheimer’s disease. When injected directly into the brain of mice, antibodies against a plaque protein retarded growth of the plaques by up to two months. No adverse side effects were found. "By injecting the antibodies directly into the brain, we were able to circumvent the problems others have encountered in developing a vaccine for this terrible disease," said Neelima Chauhan, research assistant professor in the UIC College of Medicine.

Results of the study appear in the current issue of the Journal for Neuroscience Research. Two methods of immunization have been tried in Alzheimer’s disease. In the first, called active immunization, researchers inject the antigen itself -- pieces of the sticky beta amyloid protein that constitutes the plaques -- into patients to spur the production of antibodies that should neutralize the protein and prevent it from accumulating in brain cells.



But after success in animals, clinical trials of active immunization failed when 6 to 8 percent of the patients in the study developed meningocephalitis, an inflammation of the tissue surrounding the brain. Passive immunization did not even succeed in animal studies. In this method, researchers inject ready-made antibodies, rather than the antigen, into the animal. But high concentrations of the antibodies are required to be effective, and the large doses were found to cause hemorrhaging and inflammation.

Aware of such problems, Chauhan tried a modified passive immunization method in laboratory mice that are used as a model for the disease. In a single injection, she delivered the antibody directly into the third ventricle, a narrow cavity located between the two hemispheres of the brain, and then examined the animals’ brain tissue at one, four and eight weeks. Since the antibody did not have to circulate throughout the mouse’s body where it might be absorbed, Chauhan was able to use a smaller dose than in other passive immunization studies.

At one and four weeks, the density of amyloid protein was 67 percent less than in control animals. But by eight weeks, with no further antibody injections, the protein had again accumulated. The younger the animals were, the slower the plaques regrew. No side effects, such as hemorrhaging or inflammation, were evident. "The results suggest that periodic administration of antibodies directly into the brain might offer a safer method for treating Alzheimer’s," Chauhan said. "The vaccine reduces the accumulation of amyloid proteins for at least four weeks, providing a window during which other treatments could be used to prevent the formation of new plaques."

Alzheimer’s is an age-associated degenerative neurological disease and the leading cause of dementia in older people. An estimated 10 percent of Americans over the age of 65 and half of those over age 85 have Alzheimer’s. Currently, more than 4 million Americans suffer from the disease and the number is projected to balloon to 10 to 15 million over the next several decades. Alzheimer’s is now the third most expensive disease to treat in the United States, costing close to $100 billion annually.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>