Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal study suggests safer immunization approach to Alzheimer’s

27.10.2004


Alzheimer’s, immunization, plaques

Researchers at the University of Illinois at Chicago have had preliminary success with a method of immunization intended to dissolve the plaques in brain tissue that are associated with Alzheimer’s disease. When injected directly into the brain of mice, antibodies against a plaque protein retarded growth of the plaques by up to two months. No adverse side effects were found. "By injecting the antibodies directly into the brain, we were able to circumvent the problems others have encountered in developing a vaccine for this terrible disease," said Neelima Chauhan, research assistant professor in the UIC College of Medicine.

Results of the study appear in the current issue of the Journal for Neuroscience Research. Two methods of immunization have been tried in Alzheimer’s disease. In the first, called active immunization, researchers inject the antigen itself -- pieces of the sticky beta amyloid protein that constitutes the plaques -- into patients to spur the production of antibodies that should neutralize the protein and prevent it from accumulating in brain cells.



But after success in animals, clinical trials of active immunization failed when 6 to 8 percent of the patients in the study developed meningocephalitis, an inflammation of the tissue surrounding the brain. Passive immunization did not even succeed in animal studies. In this method, researchers inject ready-made antibodies, rather than the antigen, into the animal. But high concentrations of the antibodies are required to be effective, and the large doses were found to cause hemorrhaging and inflammation.

Aware of such problems, Chauhan tried a modified passive immunization method in laboratory mice that are used as a model for the disease. In a single injection, she delivered the antibody directly into the third ventricle, a narrow cavity located between the two hemispheres of the brain, and then examined the animals’ brain tissue at one, four and eight weeks. Since the antibody did not have to circulate throughout the mouse’s body where it might be absorbed, Chauhan was able to use a smaller dose than in other passive immunization studies.

At one and four weeks, the density of amyloid protein was 67 percent less than in control animals. But by eight weeks, with no further antibody injections, the protein had again accumulated. The younger the animals were, the slower the plaques regrew. No side effects, such as hemorrhaging or inflammation, were evident. "The results suggest that periodic administration of antibodies directly into the brain might offer a safer method for treating Alzheimer’s," Chauhan said. "The vaccine reduces the accumulation of amyloid proteins for at least four weeks, providing a window during which other treatments could be used to prevent the formation of new plaques."

Alzheimer’s is an age-associated degenerative neurological disease and the leading cause of dementia in older people. An estimated 10 percent of Americans over the age of 65 and half of those over age 85 have Alzheimer’s. Currently, more than 4 million Americans suffer from the disease and the number is projected to balloon to 10 to 15 million over the next several decades. Alzheimer’s is now the third most expensive disease to treat in the United States, costing close to $100 billion annually.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>