Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve Navigation Findings Prompt New Direction for Spinal Cord Research

26.10.2004


A piece of the puzzle of how nerves find their way across the midline of the brain and spinal cord in a developing embryo has been found by Medical College of Georgia researchers.



They have found that an enzyme called focal adhesion kinase tells the arm-like extension of a neuron to cross the midline of the spinal cord, says Dr. Wen-Cheng Xiong, developmental neurobiologist and lead author on the paper in the November issue of Nature Neuroscience. After crossing, the axon becomes part of the complex network that enables the right side of the brain to control the left side of the body and vice versa.

The finding helps explain normal development of the nervous systems and provides a new target in the search for ways to re-establish connections -- and the movement and feeling they enable -- lost to spinal cord injuries. “This kinase plays a role in helping direct axon movement across the spinal cord during development,” Dr. Xiong says. “How it does that is one of the questions we hope to answer next. We still have a lot of questions.” Among those is why this mechanism doesn’t seem to work after development is complete. “If the spinal cord is injured, why doesn’t it re-cross that boundary?” she says. “Why are these molecules not functioning well in the adult?”


Focal adhesion kinase already is a hot topic among scientists studying how cells migrate and how tumor cells spread. Now, Dr. Xiong and her collaborators have found the enzyme also plays an important role in central nervous system development. She explains that for axons to journey across the spinal cord, floor plate cells along this natural midline of the developing body secrete a guidance or cue factor called netrin-1. “If this molecule is deleted, this axon cannot cross. It just stays on this side” and the developing embryo will die, a testimony to netrin’s expansive role in getting cells where they need to be. “This factor plays a critical role for nearly all the neurons to cross the midline, even in the cortex or hippocampus of the brain,” Dr. Xiong says.

A receptor on the axon called DCC, or Deleted in Colon Cancer, responds to the signal from netrin. But why the axon knows to move in a certain direction once it sees that signal was an unknown, Dr. Xiong says. The researchers have now found that once this receptor binds to netrin, focal adhesion kinase is activated that tells the axon to reorganize its structure or cytoskeleton and the restructured axon knows how to move. When they delete the kinase, the axon doesn’t make the proper journey or the proper connection.

Developing axons can sense and navigate their environment but how the two functions work together to result in the axon getting where it needs to be is poorly understood, Dr. Xiong says. “Everybody in the developmental neurobiology field is wondering what is the mechanism, how the neuron, once it senses the environment, couples with the motor activity. This provides information for that kind of puzzle,” she says of the newly published work.

The researchers are looking for other molecules that also play a role in directing axonal growth. “We have lots of information about how this molecule talks with other molecules,” Dr. Xiong says. “We just need to get a system to figure out how they talk to each other.” She’s also moving toward an injury model to see what happens to this molecular talk after a spinal cord injury. “We know this factor can turn on but we don’t know how it turns on. If you sever the spinal cord, the important crossing of the axon is gone. Right now, we don’t know how to make it go back.”

Drs. Xiong’s MCG collaborators on the study include her husband, Dr. Lin Mei, also a developmental neurobiologist; research technician Zhu Feng and graduate student Qiang Wang as well as researchers at the University of Alabama at Birmingham; Johns Hopkins University School of Medicine; and Washington University School of Medicine.

Her research is funded by the National Institutes of Health.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>