Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reductions in blood oxygen levels in newborns could contribute to ADHD development

25.10.2004


A repetitive drop in blood oxygen levels in newborn rats, similar to that caused by apnea (brief pauses in breathing) in some human infants, is followed by a long-lasting reduction in the release of the brain neurotransmitter dopamine, according to an Emory University research study. Because dopamine promotes attention, learning, memory and a variety of higher cognitive functions, the researchers believe repetitive apnea during neonatal development may be one factor leading to the development of attention deficit hyperactivity disorder (ADHD). This research will be reported at the Society for Neuroscience annual meeting in San Diego on October 24 by Glenda Keating, PhD, and Michael Decker, PhD, of the Department of Neurology at Emory University’s School of Medicine. The research was funded by the National Heart Lung and Blood Institute and conducted by the Program in Sleep Medicine and the Department of Neurology at Emory University.



Apnea of prematurity occurs in up to 85 percent of all prematurely born human infants, and obstructive sleep apnea occurs in 3 to 27 percent of all children. Data from previous studies suggests that diminished release of brain dopamine may be responsible for behaviors such as impulsiveness and distractibility, reduced self control, and impaired learning, which are hallmark traits associated with ADHD. Previous studies in Dr. Decker’s laboratory at Emory have shown that newborn rats who experience repetitive drops in blood oxygen levels go on to develop behavioral traits similar to those seen in humans with ADHD. This is the first time, however, that researchers have linked repetitive reductions in blood oxygen levels during a period of critical brain development to long-lasting deficiencies in release of dopamine specifically within the striatum, which is one of the brain regions important in modulating behavior, learning and memory.

The scientists exposed newborn rats from 7 to 11 days old to either 20-second bursts of a gas containing low oxygen content or to bursts of compressed air. Once the rats matured into juveniles, the scientists studied their locomotive activity and brain dopamine levels. They found that juvenile rats exposed to brief reductions in oxygen during their neonatal period had a 50 percent reduction in release of dopamine and were hyperactive.


Traditionally, ADHD has been attributed to genetic causes, environmental toxins or maternal use of nicotine, alcohol or drugs. Also, researchers generally have believed that the newborn brain is somewhat resistant to subtle disturbances in blood oxygenation. This study demonstrates in rats, however, that while long-term decreases in the release of dopamine can occur following as few as five days of subtle, repetitive reductions in blood oxygen levels during a critical window of brain development, the hyperactivity and impaired learning that also occur are not noticeable until later, when juvenile animals are old enough to display these behaviors.

The Emory scientists found that juvenile rats exposed to repetitive drops in blood oxygen levels as newborns also had a 50 percent increase in the level of dopamine stored in the brain tissue of the striatum compared to control rats and a reduction in the release of dopamine, showing that instead of releasing dopamine, they were abnormally storing it. "By linking reductions in blood oxygen during critical times of development to changes in dopamine function, we hope to shed light on the mechanisms of ADHD, which have been poorly understood to this point," said Dr. Keating. "Our results show that a relatively common occurrence in newborns could have long-lasting negative effects, and we believe our model has great potential for creating new insights and leading to new interventions and therapies."

"Our research also could help explain why amphetamines, such as Ritalin, and other non-amphetamines, such as Wellbutrin, that increase levels of brain dopamine are an effective treatment for children with ADHD," Dr. Decker said. "So far scientists haven’t sorted out which neurotransmitters are responsible for this effect, but if that could be narrowed down to just dopamine, as suggested by our data, it would provide a basis for developing drugs without the potential addictive properties of existing therapies."

The Emory investigators are exploring different ways to measure altered behavioral outcomes in rats to further confirm the similarity of these behaviors to those identified in ADHD. They also are planning studies aimed at preserving the brain dopamine system in individuals at risk for repetitive reductions in blood oxygenation. These studies could include non-invasive, subtle dietary changes in the mother and the newborn.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>