Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reductions in blood oxygen levels in newborns could contribute to ADHD development

25.10.2004


A repetitive drop in blood oxygen levels in newborn rats, similar to that caused by apnea (brief pauses in breathing) in some human infants, is followed by a long-lasting reduction in the release of the brain neurotransmitter dopamine, according to an Emory University research study. Because dopamine promotes attention, learning, memory and a variety of higher cognitive functions, the researchers believe repetitive apnea during neonatal development may be one factor leading to the development of attention deficit hyperactivity disorder (ADHD). This research will be reported at the Society for Neuroscience annual meeting in San Diego on October 24 by Glenda Keating, PhD, and Michael Decker, PhD, of the Department of Neurology at Emory University’s School of Medicine. The research was funded by the National Heart Lung and Blood Institute and conducted by the Program in Sleep Medicine and the Department of Neurology at Emory University.



Apnea of prematurity occurs in up to 85 percent of all prematurely born human infants, and obstructive sleep apnea occurs in 3 to 27 percent of all children. Data from previous studies suggests that diminished release of brain dopamine may be responsible for behaviors such as impulsiveness and distractibility, reduced self control, and impaired learning, which are hallmark traits associated with ADHD. Previous studies in Dr. Decker’s laboratory at Emory have shown that newborn rats who experience repetitive drops in blood oxygen levels go on to develop behavioral traits similar to those seen in humans with ADHD. This is the first time, however, that researchers have linked repetitive reductions in blood oxygen levels during a period of critical brain development to long-lasting deficiencies in release of dopamine specifically within the striatum, which is one of the brain regions important in modulating behavior, learning and memory.

The scientists exposed newborn rats from 7 to 11 days old to either 20-second bursts of a gas containing low oxygen content or to bursts of compressed air. Once the rats matured into juveniles, the scientists studied their locomotive activity and brain dopamine levels. They found that juvenile rats exposed to brief reductions in oxygen during their neonatal period had a 50 percent reduction in release of dopamine and were hyperactive.


Traditionally, ADHD has been attributed to genetic causes, environmental toxins or maternal use of nicotine, alcohol or drugs. Also, researchers generally have believed that the newborn brain is somewhat resistant to subtle disturbances in blood oxygenation. This study demonstrates in rats, however, that while long-term decreases in the release of dopamine can occur following as few as five days of subtle, repetitive reductions in blood oxygen levels during a critical window of brain development, the hyperactivity and impaired learning that also occur are not noticeable until later, when juvenile animals are old enough to display these behaviors.

The Emory scientists found that juvenile rats exposed to repetitive drops in blood oxygen levels as newborns also had a 50 percent increase in the level of dopamine stored in the brain tissue of the striatum compared to control rats and a reduction in the release of dopamine, showing that instead of releasing dopamine, they were abnormally storing it. "By linking reductions in blood oxygen during critical times of development to changes in dopamine function, we hope to shed light on the mechanisms of ADHD, which have been poorly understood to this point," said Dr. Keating. "Our results show that a relatively common occurrence in newborns could have long-lasting negative effects, and we believe our model has great potential for creating new insights and leading to new interventions and therapies."

"Our research also could help explain why amphetamines, such as Ritalin, and other non-amphetamines, such as Wellbutrin, that increase levels of brain dopamine are an effective treatment for children with ADHD," Dr. Decker said. "So far scientists haven’t sorted out which neurotransmitters are responsible for this effect, but if that could be narrowed down to just dopamine, as suggested by our data, it would provide a basis for developing drugs without the potential addictive properties of existing therapies."

The Emory investigators are exploring different ways to measure altered behavioral outcomes in rats to further confirm the similarity of these behaviors to those identified in ADHD. They also are planning studies aimed at preserving the brain dopamine system in individuals at risk for repetitive reductions in blood oxygenation. These studies could include non-invasive, subtle dietary changes in the mother and the newborn.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>