Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infection, not lack of oxygen, plays larger role in premature infant brain injury

25.10.2004


Researchers at Johns Hopkins have dispelled the widespread belief among obstetricians that, in premature infants, brain injury results from a lack of oxygen, also called hypoxia, when, in fact, infection plays a larger role.

"Infection plays a much larger role than lack of oxygen in brain injury among premature infants," said high-risk obstetrician Ernest Graham, M.D., an assistant professor at The Johns Hopkins University School of Medicine, and lead author of the study, presented at the 24th annual meeting of the Society for Maternal-Fetal Medicine and set for publication in the American Journal of Obstetrics and Gynecology online Oct. 25. "To reduce the risk of brain injury in the premature neonate, physicians may have to pay more attention to infections that occur around the time of birth."

The injury to the premature brain white matter, known as periventricular leukomalacia (PVL), is a condition in which small, cyst-like regions of brain tissue die. PVL is the most common form of brain injury in premature infants and results in cerebral palsy in 60 percent to 100 percent of those who live to adulthood. It can only be identified by ultrasound, MRI scan or CT scan of the infant’s brain.



As part of their analysis, the researchers reviewed the records of 150 cases of white matter injury in premature infants born at Hopkins from 1994 to 2001. Rates of PVL were assessed by ultrasound recordings taken at three different times after birth. Using control cases without brain injury and matched by length of pregnancy, the researchers studied several factors believed to play a role in causing brain injury, including multiple births, lack of oxygen, and the presence of infections.

Overall, the researchers confirmed previous research that showed in women who had had twins or triplets, subsequent infants were at higher risk for the subsequent development of brain injury. However, to their surprise, the researchers found a very small portion of cases with brain injury also had metabolic acidosis, a sign that oxygen was lacking. Indeed, the rates of severe metabolic acidosis were statistically the same among the cases with PVL and the in the control cases without brain injury, ranging from 3 percent to 6 percent, respectively.

The most striking results came from bacterial cultures of samples from the premature infants’ cerebrospinal fluid, blood and trachea. Researchers found a two- to four fold increase in the rates of PVL among those premature infants with an infection, tested positive by culture samples. The rates of injury were independent of the type of infection - more than a dozen different kinds of bacteria were found.
Other investigators in this research were Cynthia Holcroft, M.D.; Karishma Rai, B.A.; Pamela Donohue, Sc.D.; and Marilee Allen, M.D.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>