Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerated heartbeart mystery: Is odd electrical wave the key?

25.10.2004


For people who suffer from a rapid heartbeat condition called tachycardia, an implanted device can usually nudge the racing blood pump back into a normal rhythm by applying electrical pulses to the heart. But on rare occasions, in a twist that has baffled physicians, the anti-tachycardia pulses produce the opposite effect: they trigger an even faster and more dangerous heartbeat.



By electrically jolting cardiac cells in a lab and mapping the change in the electrical activity, biomedical engineers at Johns Hopkins may have found an answer to this mystery. Writing in the "Proceedings of the National Academy of Sciences," the researchers proposed that maverick electrical waves called multiarm spirals may be causing the accelerated heartbeats. Their article appeared this week in the journal’s online Early Edition and will be published in the Oct. 26 print edition.

The findings could lead to improvements in the next generation of implantable cardioverter defibrillators, devices used by tens of thousands of people with heart rhythm abnormalities. "At present, the devices can be programmed by the physician to deliver any one of many different combinations of pulse parameters, and although standard algorithms exist, the optimum algorithm is not known," said Leslie Tung, a co-author of the paper and director of the lab in which the research was conducted. Tung is an associate professor in the Department of Biomedical Engineering at Johns Hopkins.


"When the condition called ventricular tachycardia is accelerated to the point where it becomes indistinguishable from ventricular fibrillation, the patient must now receive a powerful, painful shock to restore normal rhythm, a scenario that is best avoided," said lead author Nenad Bursac, who worked on the research as a postdoctoral fellow in Tung’s lab. "We are the first to show that these multiarm spiral waves can be electrically induced in sheets of cardiac cells, and we think that implanted devices could sometimes be setting off the same pattern in the heart."

Tung’s lab is one of the few in the world that studies electrical activity in large-scale cardiac cell cultures. The Johns Hopkins researchers collect ventricular cells from newborn rats and remove the connective tissue. The remaining cardiac cells are placed in a nutrient solution, where they thrive and establish electrical connections with one another. The result is a roughly circular single-cell layer of cardiac cells, about 2 centimeters in diameter, situated atop a microscope cover slip.

For the experiments in their new study, Tung’s team stained the cells with a voltage-sensitive dye. The researchers then used the tip of a platinum wire to administer electric pulses to the cell culture. Within milliseconds of each jolt, a wave of electrical activity moved through the culture, causing the stained cells to glow as it passed through them. An optical-fiber bundle beneath the culture captured this light show, enabling the researchers to see the shape and movement of each electrical wave as it passed through the cardiac cells.

This gave the researchers a glimpse into the type of electrical activity that takes place in the heart. In a healthy organ, these waves move smoothly through the cardiac cells, causing the muscle fibers to contract and pump blood in a coordinated manner, like soldiers marching in near lockstep. During ventricular tachycardia, however, electrical waves can often form in the shape of a single-arm spiral, throwing the cellular soldiers out of sync and into a very fast but inefficient rhythm that results in a weakened pump output. Implanted devices can deliver a series of electrical pulses to disrupt these errant waves and restore a normal heartbeat.

The Johns Hopkins researchers found that the same kind of spiral wave behavior could be reproduced in their cell cultures, making the spiral waves available for scrutiny. Just as is the case with implanted devices, when electrical pulses were administered to single-arm spirals, the waves were not always halted. Instead, they broke up into a new pattern called multiarm spirals, exhibiting complex wave dynamics and an accelerated rhythm. The researchers hypothesize that what they witnessed in the lab may mirror what happens when an implanted device inadvertently triggers an accelerated heartbeat. "The basic rules on how waves propagate and respond to electrical stimuli may best be learned in simplified models of the heart," Tung said. "With further research, it may be possible to evaluate and optimize different anti-tachycardia algorithms."

Funding for this research was provided by the Mid-Atlantic Affiliate of the American Heart Association and the National Institutes of Health.

Bursac, the lead author of the study, is now an assistant professor of biomedical engineering at Duke University. Felipe Aguel, a co-author of the study, was a postdoctoral fellow in Tung’s lab when the research was conducted. He is now a staff fellow with the U.S. Food and Drug Administration.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>