Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimally invasive surgery for heart rhythm abnormality proven effective

19.10.2004


A minimally invasive approach to curing the most common heart rhythm abnormality, atrial fibrillation, takes half the time of the traditional surgical procedure but is equally effective, according to research at Washington University School of Medicine in St. Louis.



Results from the first reported clinical trial testing the procedure appear in the October issue of The Journal of Thoracic and Cardiovascular Surgery. "Our findings show that this technique is much easier to perform but works just as well as the more invasive approach," says principal investigator Ralph J. Damiano, M.D., the John Shoenberg Professor of Surgery and chief of cardiac surgery at the School of Medicine, and a cardiac surgeon at Barnes-Jewish Hospital. "This is very good news because it means more surgeons can perform the procedure and it will be applicable to virtually all patients with this irregular rhythm."

Atrial fibrillation affects more than two million Americans. Normally, electric signals trigger the synchronized contraction of muscles in the heart’s two upper chambers, the atria. During atrial fibrillation, a chaotic web of electric impulses spreads throughout the atria, causing the chambers to quiver rather than contract in unison. The result is a host of painful symptoms and significantly increased risk of heart attack or stroke. In fact, atrial fibrillation accounts for about 15 percent of all strokes in the United States.


Medications can alleviate symptoms in some patients, but they cannot cure the problem. In 1987, researchers at the School of Medicine led by James Cox, M.D., developed a surgical cure called the Cox maze procedure to control these erratic impulses. In this procedure, surgeons make small, strategically placed incisions in the atria. The slits generate scar tissues that serve as barriers, trapping abnormal electric signals in a "maze" of barricades. Only one path remains intact, guiding impulses to their correct destination.

With a success rate of more than 90 percent, the Cox maze procedure revolutionized the treatment of atrial fibrillation. However, it is technically difficult and therefore is not performed frequently. Surgeons also must temporarily stop the heart and use a heart-lung machine to take over the heart’s role of circulating blood in order to make the incisions. Not all patients, therefore, are healthy enough to endure the operation.

Damiano and his colleagues developed an alternative using two electrodes that pass a current through a section of heart tissue, heating and killing a thin band of tissue. This bipolar radiofrequency variation of the Cox maze procedure creates scar tissues that similarly block abnormal impulses responsible for atrial fibrillation.

Damiano’s team replaced most of the Cox maze incisions with lesions created using the new, less invasive approach in 40 consecutive patients treated for atrial fibrillation at Barnes-Jewish Hospital from January 2002 to October 2003.

Overall, the success of the procedure was equivalent to the team’s success using the traditional Cox maze approach between January 1988 and January 2002. All patients survived the operation, and about 15 percent needed a pacemaker after surgery to help maintain a normal heart rhythm. A little over 90 percent of patients followed for six months still had healthy heart rhythms.

The only notable difference between the patients in this study and their predecessors who had undergone the traditional surgery was the length of the operation. Traditional Cox maze procedures took, on average, 93 minutes to perform, while procedures that incorporated the new approach took only 54 minutes. "Shorter operative times are important for patient safety and outcome," says Damiano. "If we shorten the procedure, it decreases the time we need to keep patients on the heart-lung machine. We are working in the laboratory on an approach that someday will allow us to perform atrial fibrillation surgery on the beating heart."

Gila Z. Reckess | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>