Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Angiogenesis therapy successful for peripheral arterial disease

14.10.2004


Duke University Medical Center researchers have shown that they can stimulate the body to produce its own naturally occurring growth factors to promote blood vessel growth into tissue damaged by peripheral arterial obstructive disease (PAOD). They said their finding could offer a new approach to treating the disease, which rivals coronary artery disease in its prevalence and health impact.



The researchers injected into rabbits with a version of PAOD a gene-carrying molecule, called a plasmid, which carried a gene that is the blueprint for a protein known as the "zinc-finger-activating" (ZFP) transcription factor. Transcription factors are proteins that switch on other genes.

In the rabbits, the gene produced ZFP transcription factor that successfully activated a key blood-vessel-growth gene, called VEGF, whose protein product triggers blood vessel growth, found the researchers.


Importantly, the researchers demonstrated that this plasmid stimulated the production of three different forms of VEGF, much as the body would on its own. The researchers said they believe that the latest finding is an important advance in the field of therapeutic angiogenesis -- the process of blood vessel growth -- because past studies of VEGF in humans have only involved one form of VEGF and have seen only limited success..

In addition to stimulating new vessel growth and improving perfusion in the damaged leg tissue, the treatment also appeared to prevent the programmed cell death, known as apoptosis, of muscle cells starved of blood supply but not yet dead, the researchers reported. The results of the Duke study, led by cardiologist Brian Annex, M.D., are scheduled to be published in the Oct. 19, 2004, issue of the journal Circulation, and are available on-line at http://circ.ahajournals.org/.

"Peripheral arterial obstructive disease, which has a national incidence approaching that of coronary artery disease, is a major health care issue for which there are few effective remedies," Annex said. "This new agent may provide a novel and effective approach to treating a disease that can be just as debilitating as coronary artery disease."

The National Institutes of Health (NIH) has just begun a clinical trial using the plasmid, and Duke will also initiate a similar clinical trial in the coming months.

It is estimated between 8 to 12 million Americans suffer from PAOD. In mild cases, known as intermittent claudication, patients feel muscle pain upon exertion. More severe cases, known as critical limb ischemia, can lead to gangrene or tissue death, often necessitating amputation of the effected limb. While there are drugs and invasive procedures for the disorder, none are particularly effective, the researchers said.

VEGF, because of its ability to stimulate new blood vessel growth, is a naturally occurring substance that has intrigued scientists for years, said the Duke researchers. Cancer specialists, for example, are looking at ways of blocking VEGF-induced blood supply to tumors, while cardiologists are attempting to harness its properties to replenish blood flow to starving tissues throughout the body.

Earlier studies in mice had shown that the ZFP-carrying plasmid could induce VEGF production and stimulate angiogenesis, but the Duke study was the first one to show efficacy in an ischemic model. "While we’ve have limited success using VEGF for patients with peripheral arterial disease, we feel that new approach will have a better chance of succeeding," Annex said. "In previous studies, only one form of the VEGF protein was used. This new approach appears to give the body control over the production of the amounts and types of VEGF that it needs."

For their experiments, the researchers induced limb ischemia in the hind legs of rabbits. Ten days later, they injected the plasmid into the effected legs. At regular intervals during the next 32 days, the researchers measured the effects of treatment and found that when compared to the non-treated legs, the treated legs had an increase in capillary density, a positive increase in cellular proliferation and improved tissue perfusion.

Additionally, the researchers found significant increases in the circulating levels of three forms of VEGF – VEGF-121, VEGF-165, and VEGF-189. "Each form varies in its affinity for binding to tissue and may different effects," Annex explained. "VEGF-121, for example, is fairly soluable, so when you inject it into the leg, it travels throughout the body. This is the form used in past human trials.

"VEGF-189, on the other hand, does not easily go into circulation, so it stays where you put it," Annex continued. "VEGF-165 is somewhere in the middle. However, what’s most important is that we saw elevated levels of all three, which would indicate that the body was creating those forms in the amounts it needed."

The researchers also found that the treatment appeared to protect damaged cells from undergoing the process of apoptosis. "The results of these preclinical studies demonstrate for the first time that stimulating innate VEGF gene expression leads to the creation of multiple forms of VEGF that appear to provide therapeutic angiogenesis," Annex said.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>