Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Angiogenesis therapy successful for peripheral arterial disease

14.10.2004


Duke University Medical Center researchers have shown that they can stimulate the body to produce its own naturally occurring growth factors to promote blood vessel growth into tissue damaged by peripheral arterial obstructive disease (PAOD). They said their finding could offer a new approach to treating the disease, which rivals coronary artery disease in its prevalence and health impact.



The researchers injected into rabbits with a version of PAOD a gene-carrying molecule, called a plasmid, which carried a gene that is the blueprint for a protein known as the "zinc-finger-activating" (ZFP) transcription factor. Transcription factors are proteins that switch on other genes.

In the rabbits, the gene produced ZFP transcription factor that successfully activated a key blood-vessel-growth gene, called VEGF, whose protein product triggers blood vessel growth, found the researchers.


Importantly, the researchers demonstrated that this plasmid stimulated the production of three different forms of VEGF, much as the body would on its own. The researchers said they believe that the latest finding is an important advance in the field of therapeutic angiogenesis -- the process of blood vessel growth -- because past studies of VEGF in humans have only involved one form of VEGF and have seen only limited success..

In addition to stimulating new vessel growth and improving perfusion in the damaged leg tissue, the treatment also appeared to prevent the programmed cell death, known as apoptosis, of muscle cells starved of blood supply but not yet dead, the researchers reported. The results of the Duke study, led by cardiologist Brian Annex, M.D., are scheduled to be published in the Oct. 19, 2004, issue of the journal Circulation, and are available on-line at http://circ.ahajournals.org/.

"Peripheral arterial obstructive disease, which has a national incidence approaching that of coronary artery disease, is a major health care issue for which there are few effective remedies," Annex said. "This new agent may provide a novel and effective approach to treating a disease that can be just as debilitating as coronary artery disease."

The National Institutes of Health (NIH) has just begun a clinical trial using the plasmid, and Duke will also initiate a similar clinical trial in the coming months.

It is estimated between 8 to 12 million Americans suffer from PAOD. In mild cases, known as intermittent claudication, patients feel muscle pain upon exertion. More severe cases, known as critical limb ischemia, can lead to gangrene or tissue death, often necessitating amputation of the effected limb. While there are drugs and invasive procedures for the disorder, none are particularly effective, the researchers said.

VEGF, because of its ability to stimulate new blood vessel growth, is a naturally occurring substance that has intrigued scientists for years, said the Duke researchers. Cancer specialists, for example, are looking at ways of blocking VEGF-induced blood supply to tumors, while cardiologists are attempting to harness its properties to replenish blood flow to starving tissues throughout the body.

Earlier studies in mice had shown that the ZFP-carrying plasmid could induce VEGF production and stimulate angiogenesis, but the Duke study was the first one to show efficacy in an ischemic model. "While we’ve have limited success using VEGF for patients with peripheral arterial disease, we feel that new approach will have a better chance of succeeding," Annex said. "In previous studies, only one form of the VEGF protein was used. This new approach appears to give the body control over the production of the amounts and types of VEGF that it needs."

For their experiments, the researchers induced limb ischemia in the hind legs of rabbits. Ten days later, they injected the plasmid into the effected legs. At regular intervals during the next 32 days, the researchers measured the effects of treatment and found that when compared to the non-treated legs, the treated legs had an increase in capillary density, a positive increase in cellular proliferation and improved tissue perfusion.

Additionally, the researchers found significant increases in the circulating levels of three forms of VEGF – VEGF-121, VEGF-165, and VEGF-189. "Each form varies in its affinity for binding to tissue and may different effects," Annex explained. "VEGF-121, for example, is fairly soluable, so when you inject it into the leg, it travels throughout the body. This is the form used in past human trials.

"VEGF-189, on the other hand, does not easily go into circulation, so it stays where you put it," Annex continued. "VEGF-165 is somewhere in the middle. However, what’s most important is that we saw elevated levels of all three, which would indicate that the body was creating those forms in the amounts it needed."

The researchers also found that the treatment appeared to protect damaged cells from undergoing the process of apoptosis. "The results of these preclinical studies demonstrate for the first time that stimulating innate VEGF gene expression leads to the creation of multiple forms of VEGF that appear to provide therapeutic angiogenesis," Annex said.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>