Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wound healers cause skin disease

11.10.2004


Dutch researcher Manon Franssen has shown that cells which heal the skin following an injury play an important role in the development of the skin disease psoriasis. In people with psoriasis, the skin peels much faster than normal so that it flakes and becomes inflamed.



Franssen investigated the transit amplifying cells in the uppermost layer of the skin. These cells develop from stem cells (general unspecialised cells) and specialise into skin cells when new skin cells are needed. The transit amplifying cells are involved in the healing of the skin following an injury and in the regular renewing of the skin.

Normally these cells wait until they receive a signal to develop into skin cells. Franssen discovered that in people with psoriasis, some of the transit amplifying cells divide without waiting for a signal. As a result of this, too many skin cells develop and the skin is renewed more quickly than normal. However, when Franssen cultured the transit amplifying cells from the skin of psoriasis patients, these cells grew less quickly. Exactly how the cell division of transit amplifying cells and stem cells is regulated, is not yet clear.


In the case of psoriasis, not only is there a more rapid renewal of the skin, but the number of cell layers on the surface also increases. The skin condition causes red marks that are rich in blood and often inflamed. These red marks are covered with shiny white flakes of skin and sometimes itch. Psoriasis is not infectious.

A cure for the disease is still not available and at present only the symptoms can be controlled. According to the Dutch Psoriasis Society about 300,000 people in the Netherlands suffer from a form of this disease. Stem cell therapy might be able to provide a cure for them in the future.

Stem cells currently form an important research area in medicine. Stem cell therapy – the replacement of defective or absent stem cells, tissues or organs in patients – should be able to cure many diseases in the future.

Stem cells from the uppermost layer of the skin have never been isolated. The isolation of their descendants, the transit amplifying cells, is an important step in the right direction. By culturing these cells from patients, complete pieces of skin can be reproduced. These are extremely useful in the treatment of burns, bedsores or skin cancer. The culturing of ’diseased’ skin offers the possibility of thoroughly studying diseases and testing new treatments.

The research was funded by the Netherlands Organisation for Scientific Research.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>