Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wound healers cause skin disease

11.10.2004


Dutch researcher Manon Franssen has shown that cells which heal the skin following an injury play an important role in the development of the skin disease psoriasis. In people with psoriasis, the skin peels much faster than normal so that it flakes and becomes inflamed.



Franssen investigated the transit amplifying cells in the uppermost layer of the skin. These cells develop from stem cells (general unspecialised cells) and specialise into skin cells when new skin cells are needed. The transit amplifying cells are involved in the healing of the skin following an injury and in the regular renewing of the skin.

Normally these cells wait until they receive a signal to develop into skin cells. Franssen discovered that in people with psoriasis, some of the transit amplifying cells divide without waiting for a signal. As a result of this, too many skin cells develop and the skin is renewed more quickly than normal. However, when Franssen cultured the transit amplifying cells from the skin of psoriasis patients, these cells grew less quickly. Exactly how the cell division of transit amplifying cells and stem cells is regulated, is not yet clear.


In the case of psoriasis, not only is there a more rapid renewal of the skin, but the number of cell layers on the surface also increases. The skin condition causes red marks that are rich in blood and often inflamed. These red marks are covered with shiny white flakes of skin and sometimes itch. Psoriasis is not infectious.

A cure for the disease is still not available and at present only the symptoms can be controlled. According to the Dutch Psoriasis Society about 300,000 people in the Netherlands suffer from a form of this disease. Stem cell therapy might be able to provide a cure for them in the future.

Stem cells currently form an important research area in medicine. Stem cell therapy – the replacement of defective or absent stem cells, tissues or organs in patients – should be able to cure many diseases in the future.

Stem cells from the uppermost layer of the skin have never been isolated. The isolation of their descendants, the transit amplifying cells, is an important step in the right direction. By culturing these cells from patients, complete pieces of skin can be reproduced. These are extremely useful in the treatment of burns, bedsores or skin cancer. The culturing of ’diseased’ skin offers the possibility of thoroughly studying diseases and testing new treatments.

The research was funded by the Netherlands Organisation for Scientific Research.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>