Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wound healers cause skin disease

11.10.2004


Dutch researcher Manon Franssen has shown that cells which heal the skin following an injury play an important role in the development of the skin disease psoriasis. In people with psoriasis, the skin peels much faster than normal so that it flakes and becomes inflamed.



Franssen investigated the transit amplifying cells in the uppermost layer of the skin. These cells develop from stem cells (general unspecialised cells) and specialise into skin cells when new skin cells are needed. The transit amplifying cells are involved in the healing of the skin following an injury and in the regular renewing of the skin.

Normally these cells wait until they receive a signal to develop into skin cells. Franssen discovered that in people with psoriasis, some of the transit amplifying cells divide without waiting for a signal. As a result of this, too many skin cells develop and the skin is renewed more quickly than normal. However, when Franssen cultured the transit amplifying cells from the skin of psoriasis patients, these cells grew less quickly. Exactly how the cell division of transit amplifying cells and stem cells is regulated, is not yet clear.


In the case of psoriasis, not only is there a more rapid renewal of the skin, but the number of cell layers on the surface also increases. The skin condition causes red marks that are rich in blood and often inflamed. These red marks are covered with shiny white flakes of skin and sometimes itch. Psoriasis is not infectious.

A cure for the disease is still not available and at present only the symptoms can be controlled. According to the Dutch Psoriasis Society about 300,000 people in the Netherlands suffer from a form of this disease. Stem cell therapy might be able to provide a cure for them in the future.

Stem cells currently form an important research area in medicine. Stem cell therapy – the replacement of defective or absent stem cells, tissues or organs in patients – should be able to cure many diseases in the future.

Stem cells from the uppermost layer of the skin have never been isolated. The isolation of their descendants, the transit amplifying cells, is an important step in the right direction. By culturing these cells from patients, complete pieces of skin can be reproduced. These are extremely useful in the treatment of burns, bedsores or skin cancer. The culturing of ’diseased’ skin offers the possibility of thoroughly studying diseases and testing new treatments.

The research was funded by the Netherlands Organisation for Scientific Research.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>