Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wound healers cause skin disease

11.10.2004


Dutch researcher Manon Franssen has shown that cells which heal the skin following an injury play an important role in the development of the skin disease psoriasis. In people with psoriasis, the skin peels much faster than normal so that it flakes and becomes inflamed.



Franssen investigated the transit amplifying cells in the uppermost layer of the skin. These cells develop from stem cells (general unspecialised cells) and specialise into skin cells when new skin cells are needed. The transit amplifying cells are involved in the healing of the skin following an injury and in the regular renewing of the skin.

Normally these cells wait until they receive a signal to develop into skin cells. Franssen discovered that in people with psoriasis, some of the transit amplifying cells divide without waiting for a signal. As a result of this, too many skin cells develop and the skin is renewed more quickly than normal. However, when Franssen cultured the transit amplifying cells from the skin of psoriasis patients, these cells grew less quickly. Exactly how the cell division of transit amplifying cells and stem cells is regulated, is not yet clear.


In the case of psoriasis, not only is there a more rapid renewal of the skin, but the number of cell layers on the surface also increases. The skin condition causes red marks that are rich in blood and often inflamed. These red marks are covered with shiny white flakes of skin and sometimes itch. Psoriasis is not infectious.

A cure for the disease is still not available and at present only the symptoms can be controlled. According to the Dutch Psoriasis Society about 300,000 people in the Netherlands suffer from a form of this disease. Stem cell therapy might be able to provide a cure for them in the future.

Stem cells currently form an important research area in medicine. Stem cell therapy – the replacement of defective or absent stem cells, tissues or organs in patients – should be able to cure many diseases in the future.

Stem cells from the uppermost layer of the skin have never been isolated. The isolation of their descendants, the transit amplifying cells, is an important step in the right direction. By culturing these cells from patients, complete pieces of skin can be reproduced. These are extremely useful in the treatment of burns, bedsores or skin cancer. The culturing of ’diseased’ skin offers the possibility of thoroughly studying diseases and testing new treatments.

The research was funded by the Netherlands Organisation for Scientific Research.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>