Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New risks for bladder cancer identified by MIT team

08.10.2004


MIT researchers and colleagues have identified three new chemical risk factors for bladder cancer in a study involving some 600 people in the Los Angeles area. The work was reported in the Oct. 6 issue of the Journal of the National Cancer Institute.



The newly discovered carcinogens are found in cigarette smoke, which is already known to be a major cause of bladder cancer, contributing to at least 50 percent of the approximately 60,000 cases in the United States every year.

All three of the new carcinogens, however, were also found to be risk factors for bladder cancer in nonsmokers. Although second-hand smoke is one source of exposure for non-smokers, the researchers say that it is very important to identify the other sources of exposure for nonsmokers. "Identifying the non-smoking related sources of these [carcinogens] should become a high scientific priority," write the authors, who are led by Professor Steven R. Tannenbaum, the Underwood-Prescott Professor of Toxicology at MIT. "This is very important from a public health point of view," said Tannenbaum, who holds appointments in the Biological Engineering (BE) Division and the Department of Chemistry. "It’s much more effective to prevent cancer rather than treat it."


The team also identified six chemicals in the same chemical family that do not appear to be human carcinogens. Because they are chemically similar to their three noxious cousins, they could potentially lead to safer alternatives for the latter.

Authors of the paper from MIT are Tannenbaum, Paul L. Skipper, a BE principal research scientist, and Jinping Gan, a former graduate student. Their colleagues Manuela Gago-Dominguez, Kazuko Arakawa, Ronald K. Ross, and Mimi C. Yu are at the University of Southern California, Los Angeles.

In 1993 Tannenbaum and Skipper teamed up with Yu on the ongoing Los Angeles Bladder Cancer Study. Among other conclusions, that study has since identified a compound in the arylamine family that is a risk factor for bladder cancer in nonsmokers. In the current work, the researchers extended the Los Angeles study to examine "the possible relationship between bladder cancer S and nine other commonly occurring and structurally related arylamines," according to their paper.

Specifically, they analyzed blood samples from some 600 of the people involved in the study. Half had bladder cancer; the others did not but were matched against their counterparts for such things as age, sex and neighborhood. The team then measured exposure to the arylamines via a technique developed by Tannenbaum’s team more than 25 years ago. Arylamines to which a person is exposed react with a protein in the blood, resulting in specific products that can be detected and measured via mass spectrometry.

"So what popped out of this was actually pretty startling," Tannenbaum said. "Three of the nine compounds were indeed found to be significant risk factors for bladder cancer in nonsmokers. And except for one, none of those nine had ever been investigated before" for their potential carcinogenic activity, Tannenbaum said.

This work was sponsored by the National Institutes of Health through the National Cancer Institute and the National Institute of Environmental Health Sciences.

Elizabeth Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>