Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New risks for bladder cancer identified by MIT team

08.10.2004


MIT researchers and colleagues have identified three new chemical risk factors for bladder cancer in a study involving some 600 people in the Los Angeles area. The work was reported in the Oct. 6 issue of the Journal of the National Cancer Institute.



The newly discovered carcinogens are found in cigarette smoke, which is already known to be a major cause of bladder cancer, contributing to at least 50 percent of the approximately 60,000 cases in the United States every year.

All three of the new carcinogens, however, were also found to be risk factors for bladder cancer in nonsmokers. Although second-hand smoke is one source of exposure for non-smokers, the researchers say that it is very important to identify the other sources of exposure for nonsmokers. "Identifying the non-smoking related sources of these [carcinogens] should become a high scientific priority," write the authors, who are led by Professor Steven R. Tannenbaum, the Underwood-Prescott Professor of Toxicology at MIT. "This is very important from a public health point of view," said Tannenbaum, who holds appointments in the Biological Engineering (BE) Division and the Department of Chemistry. "It’s much more effective to prevent cancer rather than treat it."


The team also identified six chemicals in the same chemical family that do not appear to be human carcinogens. Because they are chemically similar to their three noxious cousins, they could potentially lead to safer alternatives for the latter.

Authors of the paper from MIT are Tannenbaum, Paul L. Skipper, a BE principal research scientist, and Jinping Gan, a former graduate student. Their colleagues Manuela Gago-Dominguez, Kazuko Arakawa, Ronald K. Ross, and Mimi C. Yu are at the University of Southern California, Los Angeles.

In 1993 Tannenbaum and Skipper teamed up with Yu on the ongoing Los Angeles Bladder Cancer Study. Among other conclusions, that study has since identified a compound in the arylamine family that is a risk factor for bladder cancer in nonsmokers. In the current work, the researchers extended the Los Angeles study to examine "the possible relationship between bladder cancer S and nine other commonly occurring and structurally related arylamines," according to their paper.

Specifically, they analyzed blood samples from some 600 of the people involved in the study. Half had bladder cancer; the others did not but were matched against their counterparts for such things as age, sex and neighborhood. The team then measured exposure to the arylamines via a technique developed by Tannenbaum’s team more than 25 years ago. Arylamines to which a person is exposed react with a protein in the blood, resulting in specific products that can be detected and measured via mass spectrometry.

"So what popped out of this was actually pretty startling," Tannenbaum said. "Three of the nine compounds were indeed found to be significant risk factors for bladder cancer in nonsmokers. And except for one, none of those nine had ever been investigated before" for their potential carcinogenic activity, Tannenbaum said.

This work was sponsored by the National Institutes of Health through the National Cancer Institute and the National Institute of Environmental Health Sciences.

Elizabeth Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>