Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good news: As you age, leg blood vessels adapt so you can still exercise without fainting

06.10.2004


The "fight or flight" mechanism is one of the best-known physiological responses. It increases our ability to respond to stressful situations. One way to look at exercise – physiologically -- is as a non-life-threatening example of a stressful situation. Think about it: When we exercise, our heart and breathing rates rise rapidly and blood vessels in our limbs dilate in order to deliver more oxygenated blood to our working muscle cells. The rapid rise in blood flow to the periphery -- especially to the legs -- can create a "heady" feeling, which reflects a temporary drop in blood pressure. This stimulates sympathetic nerves throughout the body to release substances that constrict blood vessels, even those vessels that feed working muscles.

Blood vessels in our leg muscles must respond to both dilating and constricting substances to meet the competing demands of muscle oxygen delivery and maintenance of bodily blood pressure, so we don’t faint! It’s a balancing act that could change with advancing age.

David Proctor and Urs Leuenberger and physiology student Dennis Koch, researchers at Pennsylvania State University and Hershey Medical Center, studied this possibility by manipulating the activity of the sympathetic nervous system in healthy older and younger men undergoing a moderate level of leg (cycling) exercise. They used a simple, but powerful sympathetic stimulus -- plunging a hand into a bucket of ice while still cycling -- and compared the blood vessel reactions in the legs of both age groups.



Editors note: Proctor is speaking at the American Physiological Society’s 2004 Intersociety Meeting, "The Integrative Biology of Exercise," Oct. 6-9 in Austin. The meeting schedule is at (http://www.the-aps.org/meetings/aps/austin/tentative.pdf). The complete program, including abstracts, for the entire meeting is available upon request to members of the media.

Arrangements to attend the meeting, and for on-site or telephone interviews, can be made through APS with Mayer Resnick (cell: 301.332.4402, mresnick@the-aps.org) or through Stacy Brooks at 301.634.7253 (sbrooks@the-aps.org). From Oct. 6 (2 p.m.) to Oct. 9, the onsite phone number in Austin is 512.482.8000, room 602, or 512.682.2950 direct.

Leg blood supply in old age important to maintain lifestyle

Results of the Proctor-Leuenberger-Koch study suggest that the mechanisms controlling blood vessel "tone" in exercising muscles may be altered by age in humans. "The augmented constrictor response seen in legs of older men could be a compensatory mechanism for their reduced level of cardiac output during exercise," they reported. In other words, older adults may require a higher level of vascular "restraint" to preserve systemic blood pressure during exercise, Proctor said.

"We expected the blood vessels in the older men to constrict less (relative to younger men) during cold stimulation, based on previous research in older animals and humans under resting conditions," Proctor said. But leg vessels of the older men constricted more, perhaps as a compensation for their reduced level of cardiac output. This indicates that the balance between vasodilation and vasoconstriction in exercising muscle may change with age.

Proctor noted that his laboratory group "is one of the first to systematically study the impact of aging on blood flow to exercising muscle in healthy humans." It’s important to study how healthy people age, he noted, "because keeping our rapidly expanding older population healthy will reduce the burden on our health-care system" as well as contribute to enhanced independence and quality of life in these individuals. Understanding the mechanisms by which blood flow to exercising muscles is altered with advancing age will also help us target interventions aimed at improving exercise tolerance in older adults, he said.

Next steps and funding: The researchers will be conducting similar experiments in women (both on estrogen replacement and not). They plan to study the mechanisms underlying age-related changes in vascular responsiveness to sympathetic stimulation; and to examine the importance of sympathetic outflow in regulating vascular tone and oxygen delivery to exercising muscles. Research is supported by the National Institute on Aging.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

nachricht Fast food makes the immune system more aggressive in the long term
12.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>