Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running not swimming or biking is best kind of loading exercise for childrens bone growth

06.10.2004


Mechanical loading through exercise builds bone strength and this effect is most pronounced during skeletal growth and development, according to Charles H. Turner, professor in the Department of Orthopaedic Surgery and director of orthopaedic research at the Indiana University School of Medicine, Indianapolis.



Exercise that puts the “best” kind of mechanical load to strengthen bones, especially during childhood and adolescence, Turner says, involves impact or high rates of load such as running or jumping, as opposed to swimming or biking. Growing bones are most responsive to the strengthening effects of running/jumping, which have the additional benefit that these types of exercise don’t affect longitudinal growth, Turner says.

Activities like “serious weight-lifting, however, aren’t recommended for children because overloading growing joints can stunt longitudinal bone growth,” and consequently stunt overall limb growth and height, he adds.


Turner says that the strengthening effect of exercise is very efficient because the cellular mechanosensors within bone direct osteogenesis (new bone growth) to where it is most needed to improve bone strength and hence bone mass.

Mechanosensors, desensitization under study

Though the cellular mechanosensors are very efficient, Turner noted that the biological processes involved in bone mechanotransduction are poorly understood, “yet several pathways are emerging from current research.” These include ion channels in the cell membrane, ATP (adenosine triphosphate) signaling, and second messengers such as prostaglandins and nitric oxide. Specific targets of mechanical loading include the L-type calcium channel (alpha 1C isoform), a gadolinium-sensitive stretch-activated channel, P2Y2 and P2X7 purinergic receptors, EP2 and EP4 prostanoid receptors, and the parathyroid hormone receptors.

“One characteristic of the mechanosensing apparatus that has only recently been studied is the important role of desensitization,” Turner notes. “Experimental protocols that insert ‘rest’ periods to reduce the effects of desensitization can double anabolic responses to mechanical loading,” he adds. Again, it’s unclear how desensitization of bone cells occur, but it’s an area ripe for further study.

A recent paper with his colleague, Alexander G. Robling, “Designing exercise regimens to increase bone strength,” dealt with desensitization and age-related effects of exercise, among many other topics, including development of an exercise “osteogenic index” or OI. The paper appeared in the “Exercise and Sport Sciences Reviews.” Among the OI observations were: (1) “short intense exercise bouts build bone most effectively, hence short sprints should build more bone than a long jog,” (2) “OI is best improved by adding more exercise sessions per week rather than lengthening the duration of individual sessions,” (3) “to reduce exercise time, it is far better to shorten each session than to reduce the number of sessions,” and (4) “the osteogenic potential of exercise can be increased further when daily exercise is divided into two shorter sessions separated by 8 hours.”

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>