Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running not swimming or biking is best kind of loading exercise for childrens bone growth

06.10.2004


Mechanical loading through exercise builds bone strength and this effect is most pronounced during skeletal growth and development, according to Charles H. Turner, professor in the Department of Orthopaedic Surgery and director of orthopaedic research at the Indiana University School of Medicine, Indianapolis.



Exercise that puts the “best” kind of mechanical load to strengthen bones, especially during childhood and adolescence, Turner says, involves impact or high rates of load such as running or jumping, as opposed to swimming or biking. Growing bones are most responsive to the strengthening effects of running/jumping, which have the additional benefit that these types of exercise don’t affect longitudinal growth, Turner says.

Activities like “serious weight-lifting, however, aren’t recommended for children because overloading growing joints can stunt longitudinal bone growth,” and consequently stunt overall limb growth and height, he adds.


Turner says that the strengthening effect of exercise is very efficient because the cellular mechanosensors within bone direct osteogenesis (new bone growth) to where it is most needed to improve bone strength and hence bone mass.

Mechanosensors, desensitization under study

Though the cellular mechanosensors are very efficient, Turner noted that the biological processes involved in bone mechanotransduction are poorly understood, “yet several pathways are emerging from current research.” These include ion channels in the cell membrane, ATP (adenosine triphosphate) signaling, and second messengers such as prostaglandins and nitric oxide. Specific targets of mechanical loading include the L-type calcium channel (alpha 1C isoform), a gadolinium-sensitive stretch-activated channel, P2Y2 and P2X7 purinergic receptors, EP2 and EP4 prostanoid receptors, and the parathyroid hormone receptors.

“One characteristic of the mechanosensing apparatus that has only recently been studied is the important role of desensitization,” Turner notes. “Experimental protocols that insert ‘rest’ periods to reduce the effects of desensitization can double anabolic responses to mechanical loading,” he adds. Again, it’s unclear how desensitization of bone cells occur, but it’s an area ripe for further study.

A recent paper with his colleague, Alexander G. Robling, “Designing exercise regimens to increase bone strength,” dealt with desensitization and age-related effects of exercise, among many other topics, including development of an exercise “osteogenic index” or OI. The paper appeared in the “Exercise and Sport Sciences Reviews.” Among the OI observations were: (1) “short intense exercise bouts build bone most effectively, hence short sprints should build more bone than a long jog,” (2) “OI is best improved by adding more exercise sessions per week rather than lengthening the duration of individual sessions,” (3) “to reduce exercise time, it is far better to shorten each session than to reduce the number of sessions,” and (4) “the osteogenic potential of exercise can be increased further when daily exercise is divided into two shorter sessions separated by 8 hours.”

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>