Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyberknife radiosurgery is a safe and effective treatment for benign tumors

06.10.2004


Treating benign tumors outside the brain with CyberKnife Frameless Radiosurgery resulted in significant improvement in symptoms and minimal toxicity, according to a study by University of Pittsburgh School of Medicine researchers presented today at the 46th Annual Meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Atlanta.



"While stereotactic radiosurgery for the treatment of benign brain tumors has become widely accepted, our knowledge about the use of this technology for benign tumors outside the brain has been limited," said Steve Burton, M.D., study co-author and assistant professor, department of radiation oncology, University of Pittsburgh School of Medicine. "The results of our study indicate that treating these tumors with CyberKnife is safe and effective and can successfully control their growth and progression."

The study, whose purpose was to evaluate the feasibility, toxicity and local control of patients with symptomatic benign tumors treated with CyberKnife, evaluated 50 benign tumors in 35 patients who underwent radiosurgery between 2001 and 2004 at the University of Pittsburgh Medical Center. The tumors were located in the spine (36), neck (6), skull (3), eye (3) and brainstem (2). Seventy-eight percent of patients treated with CyberKnife experienced an improvement in their pre-treatment symptoms, which included pain and weakness. The local control rate – the rate at which the tumor’s growth was controlled locally – was 96 percent for the 26 patients who underwent follow-up imaging from one to 25 months after the treatment was administered.


"Our findings demonstrate that CyberKnife may offer a promising treatment option for patients with benign tumors who are not candidates for surgery or whose tumors are not amenable to surgery," said Dr. Burton. "The potential benefits are significant and include short-term treatment time in an outpatient setting with rapid recovery and symptomatic response." Dr. Burton added that follow-up studies will seek to assess the long-term tumor control rates as well as any future effects.

"This study represents the largest to date on the use of frameless radiosurgery to treat benign extra-cranial lesions, and the results thus far are very encouraging. Of noteworthy interest, CyberKnife was able to control aggressive benign tumors that had progressed despite surgery and/or conventional radiation," said Ajay Bhatnagar, M.D., resident, department of radiation oncology, University of Pittsburgh School of Medicine.

CyberKnife is a non-invasive robotic radiosurgical device that can remove tumors and other lesions without open surgery, using a robotic arm, controlled by a computer, that sends multiple beams of high-dose radiation directly to the tumor site.

Also involved in the study from the University of Pittsburgh were Peter Gerszten, M.D, department of neurological surgery; Anurag Agarwal, M.D., department of radiation oncology; C.W. Ozhasoglu, M.D., department of radiation oncology; William Vogel, R.T.T., department of radiation oncology; W.C. Welch, M.D., department of neurological surgery; and Shalom Kalnicki, M.D., now of the department of radiation oncology, Montefiore Medical Center, New York.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Researchers at IST Austria define function of an enigmatic synaptic protein

22.11.2017 | Life Sciences

Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes

22.11.2017 | Materials Sciences

Women and lung cancer – the role of sex hormones

22.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>