Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cottonseed Drug Boosts Cancer Treatment in Mice

04.10.2004


A drug refined from cottonseed oil and previously tried and abandoned as a male contraceptive could boost the effectiveness of treatment for prostate cancer and possibly other common cancers as well, according to new research from the University of Michigan Comprehensive Cancer Center.

Results of the study will be reported Oct. 1 at the Symposium on Molecular Targets and Cancer Therapeutics in Geneva, Switzerland. The symposium is sponsored by the European Organization for Research and Treatment of Cancer, the National Cancer Institute and the American Association for Cancer Research.

The U-M team demonstrated that a potential small molecule inhibitor of Bcl-2/xL proteins can boost the effectiveness of radiation therapy and chemotherapy. The researchers showed that the molecule, (-)-gossypol (minus gossypol), inhibited the function of Bcl-2/xL and made the cancer more sensitive to radiation therapy in human prostate tumors in mice.



The study demonstrates for the first time that (-)-gossypol enhances the anti-tumor efficacy of radiation therapy both in vitro and in vivo with increased induction of apoptosis, or programmed cell death. “The significance of this is that anti-apoptotic proteins Bcl-2 and Bcl-xL are over expressed in many cancers, making them resistant to drug and radiation treatment. So, it is not just prostate cancer that our findings are relevant to, but also other cancers with BcL-2/xL expression, such as those of the lung, breast, ovary, pancreas, skin, brain and head and neck, where (-)-gossypol may also sensitize cancer cells to chemotherapy or radiation,” says Liang Xu, M.D., Ph.D., research assistant professor in hematology and oncology at the U-M Medical School, who will present the study in Geneva.

Based on the cell and animal data, the (-)-gossypol form of the drug was likely to be more active than the same doses of natural gossypol used in previous studies. Furthermore, their cell and animal data show that (-)-gossypol would make radiation and chemotherapy more powerful and overcome the resistance to drug and radiation treatment caused by high levels of Bcl-2/xL.

Gossypol was researched as a male contraceptive in China as long ago as 1929, but after large scale studies in the 1970s it was abandoned because some men remained infertile after stopping treatment. There were plans in Brazil in the 1990s to market the drug but these were shelved. In 1998 the World Health Organization said research on its use for contraception should be abandoned.

Gossypol is not the first drug investigated as a contraceptive to find a potential role in treating cancer. Tamoxifen was first developed as a female contraceptive and failed, only to become the world’s most successful breast cancer drug.

Will gossypol follow in the footsteps of tamoxifen? “There is a lot of research still to do, but we certainly hope so,” Xu says. “The natural form of gossypol has been extensively tested in humans and is well tolerated for long-term use. If we use the more active form, (-)-gossypol, correctly and wisely – for example, in combination with radiation or chemotherapy – gossypol may soon find its new role in our fight against cancer.”

Xu says he hopes to see the findings clinically tested soon and a Phase I trial is planned.

The research team is led by Marc Lippman, M.D., John G. Searle Professor and chair of internal medicine, and Shaomeng Wang, Ph.D., associate professor of internal medicine and co-director of the U-M Comprehensive Cancer Center Experimental Therapeutics Program, in collaboration with Theodore Lawrence, M.D., Ph.D., Isadore Lampe Professor and chair of Radiation Oncology.

Funding for the study was from the U.S. Department of Defense and the National Cancer Institute.

| newswise
Further information:
http://www.med.umich.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>