Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress and aggression reinforce each other at the biological level

04.10.2004


In rats, stress hormones lower threshold for aggression and aggression raises stress hormones; data may lead help to break the cycle of violence



Scientists may be learning why it’s so hard to stop the cycle of violence. The answer may lie in the nervous system. There appears to be a fast, mutual, positive feedback loop between stress hormones and a brain-based aggression-control center in rats, whose neurophysiology is similar to ours. It may explain why, under stress, humans are so quick to lash out and find it hard to cool down. The findings, which could point to better ways to prevent pathological violence, appear in the October issue of Behavioral Neuroscience, which is published by the American Psychological Association (APA).

In five experiments using 53 male rats, behavioral neuroscientists from the Netherlands and Hungary studied whether stimulating the brain’s aggression mechanism raised blood levels of a stress hormone and whether higher levels of the same hormone led to the kind of aggression elicited by that mechanism. The results showed a fast-acting feedback loop; the mechanism works in both directions and raising one variable raises the other. Thus, stress and aggression may be mutually reinforcing, which could explain not only why something like the stress of traffic jams leads to road rage, but also why raging triggers an ongoing stress reaction that makes it hard to stop.


In the study, the scientists electrically stimulated an aggression-related part of the rat hypothalamus, a mid-brain area associated with emotion. The rats suddenly released the stress hormone corticosterone (very like cortisol, which humans release under stress) -- even without another rat present. Normally, rats don’t respond like that unless they face an opponent or another severe stressor.

Says lead author Menno Kruk, PhD, "It is well known that these stress hormones, in part by mobilizing energy reserves, prepare the physiology of the body to fight or flee during stress. Now it appears that the very same hormones ’talk back’ to the brain in order to facilitate fighting."

To study the hypothesized feedback loop from the other direction, the scientists removed the rats’ adrenal glands to prevent any natural release of corticosterone. Then researchers injected the rats with corticosterone. Within minutes of injection, the hormone facilitated stimulation-evoked attack behavior.

Thus, in rapid order, stimulating the hypothalamic attack area led to higher stress hormones and higher stress hormones led to aggression – evidence of the feedback loop within a single conflict. Write the authors, "Such a mutual facilitation may contribute to the precipitation and escalation of violent behavior under stressful conditions."

They add that the resulting vicious cycle "would explain why aggressive behavior escalates so easily and is so difficult to stop once it has started, especially because corticosteroids rapidly pass through the blood-brain barrier." The findings suggest that even when stress hormones spike for reasons not related to fighting, they may lower attack thresholds enough to precipitate violent behavior. That argument, if extended in research to humans, could ultimately explain on the biological level why a bad day at the office could prime someone for nighttime violence toward family members.

It is speculated that the findings may help also to explain why people who are not typically violent become violent in settings previously associated with aggression: Their stress hormones rise, facilitating the onset of aggression and making them more likely to become violent in seemingly benign settings. The adrenocortical (hormonal) and hypothalamic (aggressive) responses are ancient, inbred and found across many mammalian species including rats, cats and monkeys. As a result, scientists cannot help but wonder whether the stress-aggression feedback loop could well operate in the real world, not just the lab, and – most importantly -- in humans. Further study is clearly required.

The authors comment that their findings, if extended, could explain why "the adrenocortical stress response that accompanies conflict may effectively cancel out the effect of therapies intended to reduce violent behavior. Regulation of the stress response may offer a novel approach to the understanding and control of violent behavior." They speculate that medications, perhaps as-yet undeveloped anxiety-reducers that regulate the stress response, might conceivably help to lower acute stress-precipitated violence.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>