Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic differences might help distinguish thyroid cancers

30.09.2004


Two types of thyroid cancer that are closely related and sometimes difficult to distinguish can be readily identified by differences in only a few genes, new research shows.



The study, by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, used microarray analysis to show that papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC) differ in the expression of only four or five genes.

Distinguishing between the two cancers is important because the malignancies behave differently and require different treatment. The research should also help scientists better understand the origins of the two diseases. The study is published in the a recent issue of the Journal of Clinical Oncology. “This finding suggests a potentially very useful diagnostic aid in those rare instances where the pathologist cannot distinguish between FTC and PTC,” says study leader Charis Eng, the Dorothy E. Klotz Chair of Cancer Research and director of OSU’s clinical cancer genetics program.


Thyroid cancer represents one percent of all cancers in the United States and is the most common cancer of the endocrine hormone system. Over the last few years, thyroid cancer has risen at an alarming rate, Eng says. An estimated 23,600 new cases of thyroid cancer are expected this year, nearly two-thirds of which will occur in women, and 1,460 Americans are expected to die from the disease. PTC represents about 80 percent of all thyroid cancers, with FTC representing about 10 percent of cases.

Eng and her colleagues have shown that two distinct groups of genes are either over-active or under-active in PTC cells compared with normal thyroid cells. Genes that were inactive or under-active were more typical of FTC cells.

They further found that five genes could distinguish the two tumor types.

The researchers used microarray analysis, which reveals the activity levels of tens of thousands of genes at one time, to compare gene activity in cells from six PTC tumors, nine FTC tumors and 13 samples of normal thyroid tissue.

The PTC cells showed over-expression of genes known as CITED1, claudin-10 (CLDN10), and insulin-like growth factor binding protein 6 (IGFBP6). It also showed no change in two genes, caveolin-1 (CAV-1) or caveolin-2 (CAV-2). FTC cells, on the other hand, showed no expression by CLDN10 and low activity by IGFBP6 and/or by CAV1 and CAV2.

If verified in a larger number of tumors, these genes, in combination with other known genetic changes in thyroid cancer cells, form the basis for a valuable diagnostic tool, says Eng, a recipient of the Doris Duke Distinguished Clinical Scientist Award. “Our work begins to elucidate the fundamental differences and similarities between these two types of thyroid cancer, which should help in the future to develop new therapies,” Eng says.

Clinical testing for the genetic differences can be done using polymerase chain reaction (PCR) technology, which is far more available and far less costly than microarray analysis.

Other Ohio State researchers involved in the study were first author Micheala A. Aldred, Sandya Liyanarachchi, Natalia S. Pellegata, Sissy Jhiang, Ramana V. Davuluri and Albert de la Chapelle.

Funding from the National Cancer Institute, and a gift from the Brown family, in memory of Welton D. Brown, supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>