Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic differences might help distinguish thyroid cancers

30.09.2004


Two types of thyroid cancer that are closely related and sometimes difficult to distinguish can be readily identified by differences in only a few genes, new research shows.



The study, by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, used microarray analysis to show that papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC) differ in the expression of only four or five genes.

Distinguishing between the two cancers is important because the malignancies behave differently and require different treatment. The research should also help scientists better understand the origins of the two diseases. The study is published in the a recent issue of the Journal of Clinical Oncology. “This finding suggests a potentially very useful diagnostic aid in those rare instances where the pathologist cannot distinguish between FTC and PTC,” says study leader Charis Eng, the Dorothy E. Klotz Chair of Cancer Research and director of OSU’s clinical cancer genetics program.


Thyroid cancer represents one percent of all cancers in the United States and is the most common cancer of the endocrine hormone system. Over the last few years, thyroid cancer has risen at an alarming rate, Eng says. An estimated 23,600 new cases of thyroid cancer are expected this year, nearly two-thirds of which will occur in women, and 1,460 Americans are expected to die from the disease. PTC represents about 80 percent of all thyroid cancers, with FTC representing about 10 percent of cases.

Eng and her colleagues have shown that two distinct groups of genes are either over-active or under-active in PTC cells compared with normal thyroid cells. Genes that were inactive or under-active were more typical of FTC cells.

They further found that five genes could distinguish the two tumor types.

The researchers used microarray analysis, which reveals the activity levels of tens of thousands of genes at one time, to compare gene activity in cells from six PTC tumors, nine FTC tumors and 13 samples of normal thyroid tissue.

The PTC cells showed over-expression of genes known as CITED1, claudin-10 (CLDN10), and insulin-like growth factor binding protein 6 (IGFBP6). It also showed no change in two genes, caveolin-1 (CAV-1) or caveolin-2 (CAV-2). FTC cells, on the other hand, showed no expression by CLDN10 and low activity by IGFBP6 and/or by CAV1 and CAV2.

If verified in a larger number of tumors, these genes, in combination with other known genetic changes in thyroid cancer cells, form the basis for a valuable diagnostic tool, says Eng, a recipient of the Doris Duke Distinguished Clinical Scientist Award. “Our work begins to elucidate the fundamental differences and similarities between these two types of thyroid cancer, which should help in the future to develop new therapies,” Eng says.

Clinical testing for the genetic differences can be done using polymerase chain reaction (PCR) technology, which is far more available and far less costly than microarray analysis.

Other Ohio State researchers involved in the study were first author Micheala A. Aldred, Sandya Liyanarachchi, Natalia S. Pellegata, Sissy Jhiang, Ramana V. Davuluri and Albert de la Chapelle.

Funding from the National Cancer Institute, and a gift from the Brown family, in memory of Welton D. Brown, supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>