Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MR imaging during brain surgery improves tumor removal

28.09.2004


A specially adapted magnetic resonance imaging (MRI) scanner can help physicians remove brain tumors and all of the residual cancer during one surgical procedure, according to a study published in the October issue of the journal Radiology. Using intraoperative MR-guidance, surgical strategy was changed in one out of four cases.

"Imaging during surgery provides intraoperative quality control. It presents valuable information during the procedure that allows the surgeon an opportunity to adjust the strategy," said lead author Christopher Nimsky, M.D., an associate professor at the University Erlangen-Nürnberg in Germany. Prior to intraoperative imaging, small parts of the tumor could be inadvertently missed. This tumor residue usually required repeated surgery, surveillance or further treatment.

The researchers reported their first clinical experience with intraoperative high-field MRI of 200 patients. They evaluated the extent of tumor removal depicted by intraoperative imaging and how surgical strategy was altered. The investigators found that imaging quality was indistinguishable between the pre- and intraoperative scans. In 27.5 percent of cases, intraoperative MRI impacted surgical strategy, often depicting additional tissue that needed to be removed.



MR is the imaging modality of choice for preoperative diagnosis of brain tumors and epilepsy. In the mid 1990s the advancement of open MR systems extended its practicality to the operating room. The researchers have now applied high-field scanning capabilities to intraoperative MR. High-field MR produces better image quality with reduced scan time. However, high-field MR is still an expensive imaging modality and will be for at least the next few years.

Dr. Nimsky envisions that in the future, flat MR scanners might be placed underneath operating tables to further optimize the intraoperative application of MR imaging technology. He said that the optimal solution is a nearly invisible imaging system that provides real-time feedback to the neurosurgeon without disturbing the surgical workflow.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>