Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster, more precise MRI for the medical world

24.09.2004


Magnetic Resonance Imaging (MRI) revolutionised the medical world two decades ago, providing doctors with an unparalleled view inside the human body. Now, MRI-MARCB has taken MRI to a new level with a system that enhances image quality, reduces scan time and improves diagnosis.

Currently in use in several hospitals around the world, the MRI-MARCB system overcomes one of the principal problems in producing MR images of the brain and heart: movement. “Though MRI is an excellent non-intrusive imaging modality with excellent soft tissue contrast it is susceptible to motion because it can take several seconds or even minutes to acquire an image,” explains Kay Nehrke at Philips Medical Systems in Germany, coordinator of this IST-programme funded project. “During that time the patient’s heart is beating and they’re breathing – it’s like taking a photo of a moving object. If the photo takes one second the image will appear blurry. If you follow the object with the camera, however, you’ll get a clear image and that is what we’ve done in a sense.”

The project partners used two different but complimentary techniques to overcome the motion problem. In the case of heart scans a software system was developed to create a mathematical model of the pattern of movement caused by breathing and heart beat. That information is then used to compensate for the motion effects in the resulting MR image. For brain scans, where even the slightest movement of a patient’s head could cause images to be unusable, a camera system was employed alongside the software to track and compensate for motion. “Without compensation images can be filled with artefacts, making it hard to tell whether you are looking at a clogged artery or just a poor image,” Nehrke says.



With the MRI-MARCB system image quality is greatly improved resulting in more precise diagnosis, while at the same time reducing the time it takes to perform an MRI scan. “Trials at 10 hospitals with around 200 patients showed a 30 per cent reduction in scan time because of the compensation for movement,” Nehrke notes. “As we all know time is money so this offers important cost savings for hospitals, while patients feel more comfortable because they do not have to worry so much about not moving or even breathing.”

According to the project coordinator, the software can be easily integrated into existing MRI platforms, and the camera system is “relatively inexpensive given the advantages it provides.” MRI-MARCB is currently being used at hospitals in Germany, Denmark, Japan and the United States, with the project partners planning further commercialisation activities and development in the future.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>