Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Master of antimalarial resistance

24.09.2004


A malaria parasite gene called pfcrt, already confirmed as the culprit behind resistance to the drug chloroquine in the malaria species Plasmodium falciparum, may be responsible for resistance to several other antimalarial drugs as well, a team of researchers reports in the 24 September issue of the journal Molecular Cell.



The discovery of pfcrt’s "central role" in malarial drug resistance could "help in the development of new therapeutic strategies that are effective against chloroquine-resistant parasites," said David Fidock of Albert Einstein College of Medicine, one of the lead authors of the paper.

Nearly three million people, mostly children, die from malaria each year. Chloroquine is one of the most affordable and widely used antimalarial drugs available, but chloroquine-resistant malaria has become an increasingly serious problem in the developing world, with death rates rising as a consequence.


The experiments conducted by Fidock and colleagues suggest that previously unknown mutations in the pfrct gene are associated with Plasmodium falciparum’s resistance to halofantrine and amantadine. The two drugs are used to treat mild to moderate cases of chloroquine-resistant malaria. Fidock said pfcrt’s role in halofantrine and amantadine resistance was "a big surprise actually, for both drugs. We thought initially that pfcrt was only critical for chloroquine."

The researchers uncovered the new pfcrt mutations after gradually creating strains of malaria resistant to halofantrine and amantadine treatment. As resistance to these two drugs increased, however, the parasites lost their resistance to chloroquine. This unusual pattern--gaining resistance to one drug while simultaneously losing resistance to another--may shed light on the exact role that pfcrt plays in resistance, according to Fidock and colleagues.

When a human is infected with malaria, the parasite lodges itself inside the red blood cells of its new host, drawing on the cells’ hemoglobin molecules for sustenance. As the parasite digests the hemoglobin inside a membrane pocket called the digestive vacuole, it creates a toxic byproduct called free heme. Normally, the parasite detoxifies the free heme by turning it into a product called hemozoin. As an antimalarial drug, chloroquine works by blocking this detoxification process.

The protein produced by the pfcrt gene is located in this digestive vacuole and may act as its gatekeeper. In chloroquine-resistant malaria, mutations in pfcrt may encourage chloroquine to "leak" out of the vacuole before it has a chance to stop the heme detoxification process. The pfcrt mutations seen in halofantrine and amantadine resistance seem to slow down this leak, restoring the parasite’s sensitivity to chloroquine therapy, the researchers suggest.

Fidock and colleagues note that one of the newly discovered pfcrt mutations can be found in a strain of malaria from Southeast Asia, suggesting their lab data have a parallel in the real world. The other members of the research team include Stephen Ward, Mathirut Mungthin and Patrick Bray of the Liverpool School of Tropical Medicine and Viswanathan Lakshmanan, David Johnson, and Amar Bir Singh Sidhu of Albert Einstein College of Medicine. The study was supported in part by the Wellcome Trust UK and BBSRC, the National Institutes of Health and the Ellison Medical Foundation.

David J. Johnson, David A. Fidock, Mathirut Mungthin, Viswanathan Lakshmanan, Amar Bir Singh Sidhu, Patrick G. Bray, and Stephen A. Ward: "Evidence for a Central Role for PfCRT in Conferring Plasmodium falciparum Resistance to Diverse Antimalarial Agents"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>