Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Master of antimalarial resistance

24.09.2004


A malaria parasite gene called pfcrt, already confirmed as the culprit behind resistance to the drug chloroquine in the malaria species Plasmodium falciparum, may be responsible for resistance to several other antimalarial drugs as well, a team of researchers reports in the 24 September issue of the journal Molecular Cell.



The discovery of pfcrt’s "central role" in malarial drug resistance could "help in the development of new therapeutic strategies that are effective against chloroquine-resistant parasites," said David Fidock of Albert Einstein College of Medicine, one of the lead authors of the paper.

Nearly three million people, mostly children, die from malaria each year. Chloroquine is one of the most affordable and widely used antimalarial drugs available, but chloroquine-resistant malaria has become an increasingly serious problem in the developing world, with death rates rising as a consequence.


The experiments conducted by Fidock and colleagues suggest that previously unknown mutations in the pfrct gene are associated with Plasmodium falciparum’s resistance to halofantrine and amantadine. The two drugs are used to treat mild to moderate cases of chloroquine-resistant malaria. Fidock said pfcrt’s role in halofantrine and amantadine resistance was "a big surprise actually, for both drugs. We thought initially that pfcrt was only critical for chloroquine."

The researchers uncovered the new pfcrt mutations after gradually creating strains of malaria resistant to halofantrine and amantadine treatment. As resistance to these two drugs increased, however, the parasites lost their resistance to chloroquine. This unusual pattern--gaining resistance to one drug while simultaneously losing resistance to another--may shed light on the exact role that pfcrt plays in resistance, according to Fidock and colleagues.

When a human is infected with malaria, the parasite lodges itself inside the red blood cells of its new host, drawing on the cells’ hemoglobin molecules for sustenance. As the parasite digests the hemoglobin inside a membrane pocket called the digestive vacuole, it creates a toxic byproduct called free heme. Normally, the parasite detoxifies the free heme by turning it into a product called hemozoin. As an antimalarial drug, chloroquine works by blocking this detoxification process.

The protein produced by the pfcrt gene is located in this digestive vacuole and may act as its gatekeeper. In chloroquine-resistant malaria, mutations in pfcrt may encourage chloroquine to "leak" out of the vacuole before it has a chance to stop the heme detoxification process. The pfcrt mutations seen in halofantrine and amantadine resistance seem to slow down this leak, restoring the parasite’s sensitivity to chloroquine therapy, the researchers suggest.

Fidock and colleagues note that one of the newly discovered pfcrt mutations can be found in a strain of malaria from Southeast Asia, suggesting their lab data have a parallel in the real world. The other members of the research team include Stephen Ward, Mathirut Mungthin and Patrick Bray of the Liverpool School of Tropical Medicine and Viswanathan Lakshmanan, David Johnson, and Amar Bir Singh Sidhu of Albert Einstein College of Medicine. The study was supported in part by the Wellcome Trust UK and BBSRC, the National Institutes of Health and the Ellison Medical Foundation.

David J. Johnson, David A. Fidock, Mathirut Mungthin, Viswanathan Lakshmanan, Amar Bir Singh Sidhu, Patrick G. Bray, and Stephen A. Ward: "Evidence for a Central Role for PfCRT in Conferring Plasmodium falciparum Resistance to Diverse Antimalarial Agents"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>