Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Master of antimalarial resistance

24.09.2004


A malaria parasite gene called pfcrt, already confirmed as the culprit behind resistance to the drug chloroquine in the malaria species Plasmodium falciparum, may be responsible for resistance to several other antimalarial drugs as well, a team of researchers reports in the 24 September issue of the journal Molecular Cell.



The discovery of pfcrt’s "central role" in malarial drug resistance could "help in the development of new therapeutic strategies that are effective against chloroquine-resistant parasites," said David Fidock of Albert Einstein College of Medicine, one of the lead authors of the paper.

Nearly three million people, mostly children, die from malaria each year. Chloroquine is one of the most affordable and widely used antimalarial drugs available, but chloroquine-resistant malaria has become an increasingly serious problem in the developing world, with death rates rising as a consequence.


The experiments conducted by Fidock and colleagues suggest that previously unknown mutations in the pfrct gene are associated with Plasmodium falciparum’s resistance to halofantrine and amantadine. The two drugs are used to treat mild to moderate cases of chloroquine-resistant malaria. Fidock said pfcrt’s role in halofantrine and amantadine resistance was "a big surprise actually, for both drugs. We thought initially that pfcrt was only critical for chloroquine."

The researchers uncovered the new pfcrt mutations after gradually creating strains of malaria resistant to halofantrine and amantadine treatment. As resistance to these two drugs increased, however, the parasites lost their resistance to chloroquine. This unusual pattern--gaining resistance to one drug while simultaneously losing resistance to another--may shed light on the exact role that pfcrt plays in resistance, according to Fidock and colleagues.

When a human is infected with malaria, the parasite lodges itself inside the red blood cells of its new host, drawing on the cells’ hemoglobin molecules for sustenance. As the parasite digests the hemoglobin inside a membrane pocket called the digestive vacuole, it creates a toxic byproduct called free heme. Normally, the parasite detoxifies the free heme by turning it into a product called hemozoin. As an antimalarial drug, chloroquine works by blocking this detoxification process.

The protein produced by the pfcrt gene is located in this digestive vacuole and may act as its gatekeeper. In chloroquine-resistant malaria, mutations in pfcrt may encourage chloroquine to "leak" out of the vacuole before it has a chance to stop the heme detoxification process. The pfcrt mutations seen in halofantrine and amantadine resistance seem to slow down this leak, restoring the parasite’s sensitivity to chloroquine therapy, the researchers suggest.

Fidock and colleagues note that one of the newly discovered pfcrt mutations can be found in a strain of malaria from Southeast Asia, suggesting their lab data have a parallel in the real world. The other members of the research team include Stephen Ward, Mathirut Mungthin and Patrick Bray of the Liverpool School of Tropical Medicine and Viswanathan Lakshmanan, David Johnson, and Amar Bir Singh Sidhu of Albert Einstein College of Medicine. The study was supported in part by the Wellcome Trust UK and BBSRC, the National Institutes of Health and the Ellison Medical Foundation.

David J. Johnson, David A. Fidock, Mathirut Mungthin, Viswanathan Lakshmanan, Amar Bir Singh Sidhu, Patrick G. Bray, and Stephen A. Ward: "Evidence for a Central Role for PfCRT in Conferring Plasmodium falciparum Resistance to Diverse Antimalarial Agents"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>