Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Smart antibiotics’ may result from UCLA research


New UCLA research published in Nature may lead to an effective alternative to antibiotic drugs for treating bacterial diseases.

UCLA microbiologists report the discovery of a new class of genetic elements, similar to retroviruses, that operate in bacteria, allowing them to diversify their proteins to bind to a large variety of receptors. The team discovered this fundamental mechanism in the most abundant life?forms on Earth: bacteriophages, the viruses that infect bacteria.

"A problem with antibiotics is that bacteria can mutate and become resistant to a particular antibiotic, while the antibiotic is static and cannot change," said Jeffery F. Miller, professor and chair of microbiology, immunology and molecular genetics at UCLA, who holds UCLA’s M. Philip Davis Chair in Microbiology and Immunology, and who led the research team. "Bacteriophages ("phages") are nature’s anti-microbials, and they are amazingly dynamic. If the bacterium mutates in an effort to evade, the bacteriophage can change its specificity using the mechanism we discovered, to kill the newly resistant bacterium."

The use of bacteriophage to treat infections is not in itself a new idea. "Phage therapy has been practiced for nearly a hundred years in parts of the world, and even in the United States in the first half of the 20th century. But now, we think we can engineer bacteriophages to function as ’dynamic’ anti-microbial agents. This could provide us with a renewable resource of smart antibiotics for treating bacterial diseases," said Miller, a member of both UCLA’s David Geffen School of Medicine and the UCLA College.

"It’s a bit ironic that viruses can be used to cure bacterial diseases," said Asher Hodes, a UCLA graduate student in microbiology, immunology and molecular genetics, and a member of the research team. "This approach can be effective, especially for diseases where traditional antibiotics do not work well. There is the potential for treating bacterial infections using genetically engineered phages that will efficiently overcome bacterial resistance."

Bacteriophages evolve rapidly and are a "treasure-trove of fascinating biological mechanisms," Miller said. His research team studied a bacteriophage that was able to change to recognize different receptor molecules on the surface of bacteria. The phage genome contains a series of genes, identified by Miller’s team, that enable this fast-change routine. The researchers discovered that the phage’s genome contains a "little genetic ’cassette’ that functions to diversify the part of the virus that binds to the bacterial cell. That cassette allows the phage to rapidly evolve new variants that can recognize bacteria that may have become resistant to the previous phage," Miller said.

The microbiologists initially discovered the mechanism in a bacterial virus that infects Bordetella bronchiseptica, the "evolutionary parent" of the bacterium that causes whooping cough.

How widespread is this mechanism? Through bioinformatics and analysis of DNA sequences, Miller’s team has found evidence for many other cases where either bacteriophage or bacteria use the same strategy for targeting mutations and speeding up evolution. "We’re eager to determine how widespread it is; the more we look, the more we find it," Miller said. "And the more we study it, the more ingenious the mechanism appears to us."

In the Nature paper, the team reports the discovery of how the mechanism works to target mutations, its wide distribution in nature, and features of the mechanism that relate to applications for using it. Miller’s team is continuing to study the mechanism, to learn more about its biochemical properties, and to determine whether higher forms of life have similar cassettes. "We’re now searching the genomes of higher life forms," Miller said.

Miller believes his research team will be able to exploit the new knowledge to generate proteins in the laboratory that will bind to almost any molecule of interest. "We think we can make proteins that bind to peptides, and make peptides that bind to larger proteins," he said.

As is often the case in science, the project was initially undertaken for an unrelated reason. Minghsun Liu, a former UCLA M.D.-Ph.D. student in Miller’s laboratory, was looking for bacterial viruses to study genetics when he found a remarkable property in a particular virus. Miller’s team decided to study the phenomenon. Liu is now an infectious disease fellow at Stanford University. "This was serendipitous, nothing we ever looked for," Miller said. "Serendipity is emblematic of many discoveries in science."

The research team includes Sergei Doulatov, former UCLA undergraduate and former research associate in Miller’s laboratory; Steven Zimmerly, professor of biochemistry at the University of Calgary; graduate student Lixin Dai at the University of Calgary; Rajendar Deora, a former postdoctoral scholar in Miller’s laboratory; Neeraj Mandhana, an undergraduate student in Miller’s laboratory; and Robert Simons, UCLA associate professor of microbiology, immunology and molecular genetics. The research was funded by the National Institutes of Health.

Stuart Wolpert | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>