Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental drug shown to block mutant protein causing blood disease

22.09.2004


’Targeted’ drug might treat skeletal disorders and cancers



Scientists at Dana-Farber Cancer Institute and Brigham and Women’s Hospital have prolonged the lives of mice with a rare blood disorder by using an experimental drug that blocks signals promoting runaway growth of blood cells. The researchers also tested the drug, PKC412, in a patient with the hard-to-treat disease, called Myeloproliferative Disease (MPD), and saw her symptoms improve.

PKC412, like the spotlight drug Gleevec, is a highly specific "targeted" drug that disables a switch in cancer cells that has become jammed in the "on" position because of a genetic mutation. The glitch allows a continuous stream of signals to prod blood cells into an uncontrolled frenzy of division and growth. The overproduction of white blood cells in MPD damages organs and generally turns into an acute leukemia that can be fatal.


The report appears in this week’s Online Early Edition of the Proceedings of the National Academy of Sciences. Jing Chen, PhD, of Brigham and Women’s, and Daniel J. DeAngelo, MD, PhD, of Dana-Farber, are the paper’s co-first authors. D. Gary Gilliland, MD, PhD, a Howard Hughes Medical Institute investigator at Brigham and Women’s Hospital, and Richard M. Stone, MD, of Dana-Farber are the senior authors. Other authors are from Dana-Farber, Brigham and Women’s, Harvard Medical School, Emory University, and Novartis Pharma AG. "The study shows the potential utility of drugs that block mutant tyrosine kinases, and that these drugs are opening more doors to treating cancers," explains Stone.

Tyrosine kinases are molecules that act as biological switches inside cells, regulating processes including cell division and growth. Abnormal kinases have been discovered to be major culprits in many forms of cancer. Because inhibitor drugs strike the abnormal kinases in cancer cells without harming normal tissue, they are associated with fewer side effects than standard cancer drugs.

In the study, mice with MPD that were treated with the oral compound PKC412 significantly outlived those given a placebo. When tested in a single patient, a 52-year-old woman with MPD, the drug reduced her dangerously high white blood cell count and shrank her enlarged spleen and lymph nodes. However, the disease wasn’t cured and she underwent a bone-marrow transplant to treat the acute leukemia caused by her MPD.

PKC412 acts similarly to the pioneering drug Gleevec, one of the first drugs to treat cancers by shutting down abnormal kinase signal switches. Gleevec blocks uncontrolled growth signals in Chronic Myelogenous Leukemia and Gastrointestinal Stromal Tumor.

The Dana-Farber scientists have been testing PKC412 in patients with Acute Myeloid Leukemia, some cases of which are caused by a mutant on-off switch called FLT3. The drug specifically blocks abnormal FLT3 kinases.

MPD is caused by a different mutated kinase, FGFR1, which is inhibited by PKC412. The mutation occurs when two broken pieces of the chromosome that carries the FGFR1 gene join together abnormally.

The findings suggest, the authors write, that PKC412 may be effective in treating MPD, as well as other diseases and cancers where mutant FGFR1 is the culprit. These include human skeletal disorders such as Pfeiffer syndrome, which causes misshapen skull, face, fingers and toes, breast and pancreatic cancers, and brain tumors.

Bill Schaller | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>