Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sushi Eaters Should Not Count on Wasabi to Clear the Nose

20.09.2004


Wasabi, (Wasabia japonica) is commonly known as the Japanese horseradish used to enhance the enjoyment of sushi. This spice is a member of the Cruciferae family of plants; its rhizome, the creeping underground stem, is ground into a green paste and used as a condiment. Oral ingestion of wasabi causes a transient burning sensation in the nose, and there is a widely held notion that this produces a decongestant effect. This conclusion is anecdotal, because there have been no scientific studies to prove this concept.



The pungent ingredient in wasabi that causes the nasal burning sensation is allyl isothiocyanate, a chemical also found in mustard and horseradish. The toxicity of allyl isothiocyanate is low, and it is not considered a human carcinogen. It has been produced commercially for more than 60 years.

While there is a subjective improvement in nasal breathing after eating wasabi, knowledge of an objective decongestant effect may have some clinical utility. For example, wasabi may be useful in treating congested patients with hypertension or heart disease, in whom traditional adrenergic decongestants would not be the best regimen. Also, some patients may prefer herbal remedies to traditional western medicines. A temporary decongestant may also have some use if administered before a nasal saline irrigation to improve the lavage.


A new study examined whether oral ingestion of wasabi has both a subjective and objective decongestant effect on the nose. The authors of “The Wasabi Effect” are The David S. Cameron MD, and Raul M. Cruz MD, both from the Department of Head and Neck Surgery, Kaiser Permanente Medical Center, Oakland, CA. Their findings are being presented on September 21, 2004, at the American Academy of Otolaryngology-Head and Neck Surgery Foundation Annual Meeting & OTO EXPO, being held September 19-22, 2004, at the Jacob Javits Convention Center, New York City, NY.

Methodology: This research was performed using the Visual Analog Scale (VAS), a validated instrument that has been used in numerous studies to quantify subjective opening of the nasal passages. Acoustic Rhinometry was used to objectively measure the nasal airway. In this technique, reflected sound waves are analyzed to calculate the nasal cross-sectional area at any distance into the nose, allowing also for calculation of nasal volume. The advantages of acoustic rhinometry are that it is a painless, noninvasive technique that can be rapidly performed and is highly reproducible.

Twenty-two volunteer subjects were used for the study, (12 males, and 10 females, ages 27-68). Subjects were excluded from the study if they had active rhinitis, any recent viral illness (within one week), had prior nasal surgery or significantly abnormal nasal anatomy (e.g. marked septal deviation), or were taking any decongestant or antihistamine medications. None reported allergy to wasabi, mustard, or horseradish.

They were seated and asked to fill out a VAS to subjectively measure their level of congestion, rhinorrhea, itch, and nasal comfort. This consisted of a 100mm horizontal line representing a spectrum between two extremes. The subjects were instructed to mark a single vertical line though the horizontal line rating the subjective nasal sensation at that present time. The distance to this mark was measured from the left side of the scale in millimeters. Congestion was measured by a VAS between “totally clear” and “totally blocked”. Rhinorrhea was measured by a VAS between “not runny” and “very runny”. Nasal itch was measured by a VAS between “not itchy” and “very itchy”. Finally nasal comfort was measured by a VAS between “totally comfortable” and “worst pain imaginable.”

The subjects were then asked to blow their nose, clearing any secretions, after which acoustic rhinometry was performed to objectively measure nasal volume and minimal cross-sectional area. The subjects were then asked to place 0.1 ml of wasabi paste on their anterior tongue and asked to dissolve it in their mouth while breathing through their nose and mouth. This wasabi dose was repeated three times at one-minute intervals. One minute after the last dose of wasabi, the subjects were again asked to blow their noses, and the VAS and acoustic rhinometry measurements were repeated. The subject’s tolerance of this wasabi challenge was also assessed by a questionnaire where subjects rated the experience as “intolerable,” “unpleasant,” “tolerable,” or “enjoyable.”

Results: Oral ingestion of wasabi had no effect on the subjective sensation of nasal comfort, itch, or rhinorrhea. There was a trend towards a sensation of increased nasal patency, as measured by the VAS. However, the acoustic rhinometry data showed that there was a statistically significant congesting effect as measure by total MCA and nasal volume. Seven subjects rated this wasabi test as “unpleasant.” Eleven rated it as “tolerable.” Four rated it as “enjoyable.” None found it “intolerable.”

Conclusions: The researchers believe that the sensation of nasal patency can be attributed to a body of evidence that implicates thermoreceptors in the nasal vestibule and nasal mucosa as an important mediator of this sensation. The theory is that nasal airflow cools these receptors through both evaporative and convective mechanisms. These thermoreceptors send signals to the brain via the trigeminal nerve. The trigeminal nerve is known to convey afferent somatosensory information from the nose including cooling, warming, burning, stinging, itching, tickling, pain, and the perception of humidity. Allylisothiocyanate directly stimulates these trigeminal nerve fibers.

Another theory to explain our results may be the action of the dilator naris muscle. This muscle is responsible for nasal flaring, and its activation has been shown to decrease nasal resistance to airflow in humans by 30 percent, as it stabilizes the nasal valve area. If wasabi activates this muscle, nasal airflow may be facilitated despite an increase in mucosal congestion.

What is known is that oral intake of wasabi is well tolerated. While there is a trend towards a subjective increase in the sensation of nasal airflow, and certainly a widely held misconception by the general public that eating wasabi decongests the nose, it actually congests the nasal mucosa. Essentially, this dichotomy between perception and reality remains speculative, but could involve activation of nasal sensory nerves, and or the dilator naris muscle.

| newswise
Further information:
http://www.entnet.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>