Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sushi Eaters Should Not Count on Wasabi to Clear the Nose

20.09.2004


Wasabi, (Wasabia japonica) is commonly known as the Japanese horseradish used to enhance the enjoyment of sushi. This spice is a member of the Cruciferae family of plants; its rhizome, the creeping underground stem, is ground into a green paste and used as a condiment. Oral ingestion of wasabi causes a transient burning sensation in the nose, and there is a widely held notion that this produces a decongestant effect. This conclusion is anecdotal, because there have been no scientific studies to prove this concept.



The pungent ingredient in wasabi that causes the nasal burning sensation is allyl isothiocyanate, a chemical also found in mustard and horseradish. The toxicity of allyl isothiocyanate is low, and it is not considered a human carcinogen. It has been produced commercially for more than 60 years.

While there is a subjective improvement in nasal breathing after eating wasabi, knowledge of an objective decongestant effect may have some clinical utility. For example, wasabi may be useful in treating congested patients with hypertension or heart disease, in whom traditional adrenergic decongestants would not be the best regimen. Also, some patients may prefer herbal remedies to traditional western medicines. A temporary decongestant may also have some use if administered before a nasal saline irrigation to improve the lavage.


A new study examined whether oral ingestion of wasabi has both a subjective and objective decongestant effect on the nose. The authors of “The Wasabi Effect” are The David S. Cameron MD, and Raul M. Cruz MD, both from the Department of Head and Neck Surgery, Kaiser Permanente Medical Center, Oakland, CA. Their findings are being presented on September 21, 2004, at the American Academy of Otolaryngology-Head and Neck Surgery Foundation Annual Meeting & OTO EXPO, being held September 19-22, 2004, at the Jacob Javits Convention Center, New York City, NY.

Methodology: This research was performed using the Visual Analog Scale (VAS), a validated instrument that has been used in numerous studies to quantify subjective opening of the nasal passages. Acoustic Rhinometry was used to objectively measure the nasal airway. In this technique, reflected sound waves are analyzed to calculate the nasal cross-sectional area at any distance into the nose, allowing also for calculation of nasal volume. The advantages of acoustic rhinometry are that it is a painless, noninvasive technique that can be rapidly performed and is highly reproducible.

Twenty-two volunteer subjects were used for the study, (12 males, and 10 females, ages 27-68). Subjects were excluded from the study if they had active rhinitis, any recent viral illness (within one week), had prior nasal surgery or significantly abnormal nasal anatomy (e.g. marked septal deviation), or were taking any decongestant or antihistamine medications. None reported allergy to wasabi, mustard, or horseradish.

They were seated and asked to fill out a VAS to subjectively measure their level of congestion, rhinorrhea, itch, and nasal comfort. This consisted of a 100mm horizontal line representing a spectrum between two extremes. The subjects were instructed to mark a single vertical line though the horizontal line rating the subjective nasal sensation at that present time. The distance to this mark was measured from the left side of the scale in millimeters. Congestion was measured by a VAS between “totally clear” and “totally blocked”. Rhinorrhea was measured by a VAS between “not runny” and “very runny”. Nasal itch was measured by a VAS between “not itchy” and “very itchy”. Finally nasal comfort was measured by a VAS between “totally comfortable” and “worst pain imaginable.”

The subjects were then asked to blow their nose, clearing any secretions, after which acoustic rhinometry was performed to objectively measure nasal volume and minimal cross-sectional area. The subjects were then asked to place 0.1 ml of wasabi paste on their anterior tongue and asked to dissolve it in their mouth while breathing through their nose and mouth. This wasabi dose was repeated three times at one-minute intervals. One minute after the last dose of wasabi, the subjects were again asked to blow their noses, and the VAS and acoustic rhinometry measurements were repeated. The subject’s tolerance of this wasabi challenge was also assessed by a questionnaire where subjects rated the experience as “intolerable,” “unpleasant,” “tolerable,” or “enjoyable.”

Results: Oral ingestion of wasabi had no effect on the subjective sensation of nasal comfort, itch, or rhinorrhea. There was a trend towards a sensation of increased nasal patency, as measured by the VAS. However, the acoustic rhinometry data showed that there was a statistically significant congesting effect as measure by total MCA and nasal volume. Seven subjects rated this wasabi test as “unpleasant.” Eleven rated it as “tolerable.” Four rated it as “enjoyable.” None found it “intolerable.”

Conclusions: The researchers believe that the sensation of nasal patency can be attributed to a body of evidence that implicates thermoreceptors in the nasal vestibule and nasal mucosa as an important mediator of this sensation. The theory is that nasal airflow cools these receptors through both evaporative and convective mechanisms. These thermoreceptors send signals to the brain via the trigeminal nerve. The trigeminal nerve is known to convey afferent somatosensory information from the nose including cooling, warming, burning, stinging, itching, tickling, pain, and the perception of humidity. Allylisothiocyanate directly stimulates these trigeminal nerve fibers.

Another theory to explain our results may be the action of the dilator naris muscle. This muscle is responsible for nasal flaring, and its activation has been shown to decrease nasal resistance to airflow in humans by 30 percent, as it stabilizes the nasal valve area. If wasabi activates this muscle, nasal airflow may be facilitated despite an increase in mucosal congestion.

What is known is that oral intake of wasabi is well tolerated. While there is a trend towards a subjective increase in the sensation of nasal airflow, and certainly a widely held misconception by the general public that eating wasabi decongests the nose, it actually congests the nasal mucosa. Essentially, this dichotomy between perception and reality remains speculative, but could involve activation of nasal sensory nerves, and or the dilator naris muscle.

| newswise
Further information:
http://www.entnet.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>