Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consortium identifies novel potential therapeutic targets for spinal cord repair

17.09.2004


Research funded by the Christopher Reeve Paralysis Foundation focuses on 108 genes



The study, involving the seven Consortium laboratories, characterized the changes in gene expression at the site of, as well as above and below, a moderate contusion injury in rats. The project involved 108 GeneChips and looked at four time points, spanning from three hours after injury to a more "chronic" state 35 days later. The data analysis produced a spatial and temporal profile of spinal cord injury and also identified several promising avenues for new clinical treatments. The study, the largest of its kind published to-date in the spinal cord field, is now available in the October issue of Experimental Neurology at http://dx.doi.org/10.1016/j.expneurol.2004.05.042.

The CRPF Research Consortium on Spinal Cord Injury is an international network of neuroscientists focused on repair and recovery of function in the chronically injured spinal cord. Through collaborative research, Consortium investigators are studying how to optimize the intrinsic capacity of the adult nervous system to repair and remodel itself as well as how to elicit robust regenerative responses after injury.


The Consortium is working with TopCoder (http://www.topcoder.com), a Glastonbury, CT company that organizes and hosts online and onsite programming competitions for a global community of members, to create a high-quality, web-based application to disseminate the microarray data from this study to the scientific community. This interactive platform, which will allow users to see how thousands of genes behave after injury, will be available at http://genechip.salk.edu/ shortly and will make data easily accessible to all scientists including those unfamiliar with GeneChip technology. CRPF believes that the database information will be highly relevant to researchers investigating many different aspects of spinal cord injury. Since the web application is still under development, temporary access to the study’s raw data and analyzed files is available now at http://genechip.salk.edu/.

"This is groundbreaking research," said Kathy Lewis, President and CEO of CRPF. "Consortium scientists are already moving forward to explore the therapeutic possibilities identified by the study."

Microarray technology has emerged as an exciting and aggressive tool that enables researchers to screen thousands of genes simultaneously to see which ones are active, or expressed, and which ones are silent. Genes are arrayed on a microchip the size of a fingernail, and experiments that once took years to complete can now be done in a relatively short time. The technology eliminates a lot of the guesswork that had been involved in gene profiling. Scientists believe that by observing the patterns of gene expression to see how they change after a spinal cord injury, they might identify therapeutic targets.

"Microarray technology gives us an unbiased ’snapshot’ of gene expression in many animals, including the mouse and rat, and humans. The approach enables biologists not only to explore gene changes after injury but also to look at genes that are changed by any experimental therapy. It is a powerful research tool," said Susan P. Howley, CRPF Executive Vice President and Director of Research.

The Christopher Reeve Paralysis Foundation (CRPF) is committed to funding research that develops treatments and cures for paralysis caused by spinal cord injury and other central nervous system disorders. The Foundation also vigorously works to improve the quality of life for people living with disabilities through its grants program, Paralysis Resource Center, and advocacy efforts. For more information on CRPF’s Research Consortium visit www.ChristopherReeve.org or contact Susan P. Howley at 800-225-0292, ext. 113.

Maggie Goldberg | EurekAlert!
Further information:
http://www.crpf.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>