Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heat-controlled Drug Implants Offer Hope for Future


Researchers at the Georgia Institute of Technology have developed a material that may one day allow patients to forgo daily injections and pills and receive prescriptions instead through micro-thin implantable films that release medication according to changes in temperature. The research, detailing results from testing insulin release in the lab, appears in the September 13 edition of the journal, Biomacromolecules.

Fluorescently tagged insulin occupies a three-layer microgel thin film

“We loaded insulin in layers of microgel films in the lab and released bursts of insulin by applying heat to the films. They were extremely stable and could continue to release the drug for more than one month at a time,” said L. Andrew Lyon, associate professor at Georgia Tech’s School of Chemistry and Biochemistry.

The results add to a decade’s worth of work in controlled and targeted drug delivery. Lyon’s usage of using films assembled from microparticles allows more control over drug release than films previously made in monolithic form.

The insulin tests, said Lyon, serve as proof of a concept that this method of drug delivery is worth further investigation. Currently, the films release their cargo at 31 C, six degrees below human body temperature, but Lyon’s group is working on pushing the release point to a temperature slightly above that of the human body. Once implanted, the pharmaceutical-loaded films could be placed on chips with resistive heaters and scheduled to release drugs according to a time schedule or another trigger.

“One potential use is tying the implant to a blood glucose monitor using radio frequency (RF) technology,” said Lyon. “When the monitor detects that a diabetic patients has low blood sugar, it could send a signal to the chip to heat the film and release insulin into the bloodstream.”

Patients undergoing hormone therapy, chemotherapy or other treatments requiring periodic medication could conceivably get their dosages this way.

“Of course using these films to deliver medications in humans would require many more trials, said Lyon. “We believe we’ve taken an important step in new methods of drug delivery.”

David Terraso | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>