Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat-controlled Drug Implants Offer Hope for Future

14.09.2004


Researchers at the Georgia Institute of Technology have developed a material that may one day allow patients to forgo daily injections and pills and receive prescriptions instead through micro-thin implantable films that release medication according to changes in temperature. The research, detailing results from testing insulin release in the lab, appears in the September 13 edition of the journal, Biomacromolecules.


Fluorescently tagged insulin occupies a three-layer microgel thin film



“We loaded insulin in layers of microgel films in the lab and released bursts of insulin by applying heat to the films. They were extremely stable and could continue to release the drug for more than one month at a time,” said L. Andrew Lyon, associate professor at Georgia Tech’s School of Chemistry and Biochemistry.

The results add to a decade’s worth of work in controlled and targeted drug delivery. Lyon’s usage of using films assembled from microparticles allows more control over drug release than films previously made in monolithic form.


The insulin tests, said Lyon, serve as proof of a concept that this method of drug delivery is worth further investigation. Currently, the films release their cargo at 31 C, six degrees below human body temperature, but Lyon’s group is working on pushing the release point to a temperature slightly above that of the human body. Once implanted, the pharmaceutical-loaded films could be placed on chips with resistive heaters and scheduled to release drugs according to a time schedule or another trigger.

“One potential use is tying the implant to a blood glucose monitor using radio frequency (RF) technology,” said Lyon. “When the monitor detects that a diabetic patients has low blood sugar, it could send a signal to the chip to heat the film and release insulin into the bloodstream.”

Patients undergoing hormone therapy, chemotherapy or other treatments requiring periodic medication could conceivably get their dosages this way.

“Of course using these films to deliver medications in humans would require many more trials, said Lyon. “We believe we’ve taken an important step in new methods of drug delivery.”

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>