Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme stretch-growth of axons

08.09.2004


Pushing neurons’ physiological limits provides researchers with new ways to repair nerve damage

Sometimes it is the extremes that point the way forward. Researchers at the University of Pennsylvania School of Medicine have induced nerve fibers – or axons – to grow at rates and lengths far exceeding what has been previously observed. To mimic extreme examples in nature and learn more about neuronal physiology, they have mechanically stretched axons at rates of eight millimeters per day, reaching lengths of up to ten centimeters without breaking. This new work has implications for spinal cord and nerve-damage therapy, since longer implantable axons are necessary for this type of repair.

In the present study, the team, led by Douglas H. Smith, MD, Professor of Neurosurgery and Director of the Center for Brain Injury and Repair, placed neurons from rat dorsal root ganglia (clusters of nerves just outside the spinal cord) on nutrient- filled plastic plates. Axons sprouted from the neurons on each plate and connected with neurons on the other plate. The plates were then slowly pulled apart over a series of days, aided by a precise computer-controlled motor system. "By rapid and continuous stretching, we end up with huge bundles of axons that are visible to the eye," says Smith. The axons started at an invisible 100 microns and have been stretched to 10 centimeters in less than two weeks. Smith and colleagues report their findings in the cover story of the September 8, 2004 issue of the Journal of Neuroscience.



"This type of stretch growth of axons is really a new perspective," says Smith. Despite the extreme growth in length, the axons substantially increased in diameter as well. Using electron microscopy, they confirmed this growth by identifying a fully formed internal skeleton and a full complement of cellular structures called organelles in the stretched axons. "Surprisingly, the axon appears to be invigorated by this extreme growth," says Smith. "It doesn’t disconnect, but forms a completely normal-appearing internal structure."

These extreme rates of growth are not consistent with the current understanding of the limitations of axon growth. "Proteins necessary to sustain this growth are somehow correctly brought to sites along the axon faster than conceivable rates of transport," notes Smith. The team suggests two possible mechanisms to explain this: increasing transport to a very fast rate or making the necessary proteins at the site, proximal to the growing axons. Smith believes that this form of growth commonly occurs in nature. "For example, it can be inferred that axons in a blue whale’s spine grow more than three centimeters a day and in a giraffe’s neck at two centimeters a day at peak growth."

The team also found that they had to condition the axons to grow in an extreme way. "Although they can handle enormous growth, you can’t just spring it on them," explains Bryan Pfister, PhD a post-doctoral fellow in Smith’s lab and coauthor of the study. "If we ramp up the stretch rate too fast, the axons will snap." From this the team surmises that in nature animals must grow at a metered pace, which allows for constant feedback and conditioning.

It has been well established that axons initially grow out from neurons and follow a chemical stimulus to connect with another neuron. However, once the axon has reached its target a relatively unknown form of stretch-growth must ensue as the animal grows. Mechanical changes in the growing brain, spine, and other bones are the starting point for natural stretch-growth in axons. "We know that it’s not tension on the neuron itself, but tension on the axon," says Smith. "It’s deformation, a pulling on the axon." At this point, it is unclear what receptors and cell signaling pathways are involved to get the process started, but from this and previous studies the investigators do report that the signal is from a mechanical stimulus along the length of the axon as opposed to a chemical stimulus. "The stretch is coming from the whole body growing," explains Smith. "For example, the growing spine bones in the whale likely exert mechanical forces on the axons in the spinal cord."

The researchers conclude that this is a genetic program for growth that has been conserved throughout animal species, but just hasn’t been studied in depth. By revealing the mechanisms of extreme-stretch growth, the team is currently applying this knowledge to develop nerve constructs to repair nerve and spinal cord damage. "To find that tension is actually good for your nerves for both growth and repair may not be such a long stretch," says Smith.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>