Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Extreme stretch-growth of axons


Pushing neurons’ physiological limits provides researchers with new ways to repair nerve damage

Sometimes it is the extremes that point the way forward. Researchers at the University of Pennsylvania School of Medicine have induced nerve fibers – or axons – to grow at rates and lengths far exceeding what has been previously observed. To mimic extreme examples in nature and learn more about neuronal physiology, they have mechanically stretched axons at rates of eight millimeters per day, reaching lengths of up to ten centimeters without breaking. This new work has implications for spinal cord and nerve-damage therapy, since longer implantable axons are necessary for this type of repair.

In the present study, the team, led by Douglas H. Smith, MD, Professor of Neurosurgery and Director of the Center for Brain Injury and Repair, placed neurons from rat dorsal root ganglia (clusters of nerves just outside the spinal cord) on nutrient- filled plastic plates. Axons sprouted from the neurons on each plate and connected with neurons on the other plate. The plates were then slowly pulled apart over a series of days, aided by a precise computer-controlled motor system. "By rapid and continuous stretching, we end up with huge bundles of axons that are visible to the eye," says Smith. The axons started at an invisible 100 microns and have been stretched to 10 centimeters in less than two weeks. Smith and colleagues report their findings in the cover story of the September 8, 2004 issue of the Journal of Neuroscience.

"This type of stretch growth of axons is really a new perspective," says Smith. Despite the extreme growth in length, the axons substantially increased in diameter as well. Using electron microscopy, they confirmed this growth by identifying a fully formed internal skeleton and a full complement of cellular structures called organelles in the stretched axons. "Surprisingly, the axon appears to be invigorated by this extreme growth," says Smith. "It doesn’t disconnect, but forms a completely normal-appearing internal structure."

These extreme rates of growth are not consistent with the current understanding of the limitations of axon growth. "Proteins necessary to sustain this growth are somehow correctly brought to sites along the axon faster than conceivable rates of transport," notes Smith. The team suggests two possible mechanisms to explain this: increasing transport to a very fast rate or making the necessary proteins at the site, proximal to the growing axons. Smith believes that this form of growth commonly occurs in nature. "For example, it can be inferred that axons in a blue whale’s spine grow more than three centimeters a day and in a giraffe’s neck at two centimeters a day at peak growth."

The team also found that they had to condition the axons to grow in an extreme way. "Although they can handle enormous growth, you can’t just spring it on them," explains Bryan Pfister, PhD a post-doctoral fellow in Smith’s lab and coauthor of the study. "If we ramp up the stretch rate too fast, the axons will snap." From this the team surmises that in nature animals must grow at a metered pace, which allows for constant feedback and conditioning.

It has been well established that axons initially grow out from neurons and follow a chemical stimulus to connect with another neuron. However, once the axon has reached its target a relatively unknown form of stretch-growth must ensue as the animal grows. Mechanical changes in the growing brain, spine, and other bones are the starting point for natural stretch-growth in axons. "We know that it’s not tension on the neuron itself, but tension on the axon," says Smith. "It’s deformation, a pulling on the axon." At this point, it is unclear what receptors and cell signaling pathways are involved to get the process started, but from this and previous studies the investigators do report that the signal is from a mechanical stimulus along the length of the axon as opposed to a chemical stimulus. "The stretch is coming from the whole body growing," explains Smith. "For example, the growing spine bones in the whale likely exert mechanical forces on the axons in the spinal cord."

The researchers conclude that this is a genetic program for growth that has been conserved throughout animal species, but just hasn’t been studied in depth. By revealing the mechanisms of extreme-stretch growth, the team is currently applying this knowledge to develop nerve constructs to repair nerve and spinal cord damage. "To find that tension is actually good for your nerves for both growth and repair may not be such a long stretch," says Smith.

Karen Kreeger | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>