Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme stretch-growth of axons

08.09.2004


Pushing neurons’ physiological limits provides researchers with new ways to repair nerve damage

Sometimes it is the extremes that point the way forward. Researchers at the University of Pennsylvania School of Medicine have induced nerve fibers – or axons – to grow at rates and lengths far exceeding what has been previously observed. To mimic extreme examples in nature and learn more about neuronal physiology, they have mechanically stretched axons at rates of eight millimeters per day, reaching lengths of up to ten centimeters without breaking. This new work has implications for spinal cord and nerve-damage therapy, since longer implantable axons are necessary for this type of repair.

In the present study, the team, led by Douglas H. Smith, MD, Professor of Neurosurgery and Director of the Center for Brain Injury and Repair, placed neurons from rat dorsal root ganglia (clusters of nerves just outside the spinal cord) on nutrient- filled plastic plates. Axons sprouted from the neurons on each plate and connected with neurons on the other plate. The plates were then slowly pulled apart over a series of days, aided by a precise computer-controlled motor system. "By rapid and continuous stretching, we end up with huge bundles of axons that are visible to the eye," says Smith. The axons started at an invisible 100 microns and have been stretched to 10 centimeters in less than two weeks. Smith and colleagues report their findings in the cover story of the September 8, 2004 issue of the Journal of Neuroscience.



"This type of stretch growth of axons is really a new perspective," says Smith. Despite the extreme growth in length, the axons substantially increased in diameter as well. Using electron microscopy, they confirmed this growth by identifying a fully formed internal skeleton and a full complement of cellular structures called organelles in the stretched axons. "Surprisingly, the axon appears to be invigorated by this extreme growth," says Smith. "It doesn’t disconnect, but forms a completely normal-appearing internal structure."

These extreme rates of growth are not consistent with the current understanding of the limitations of axon growth. "Proteins necessary to sustain this growth are somehow correctly brought to sites along the axon faster than conceivable rates of transport," notes Smith. The team suggests two possible mechanisms to explain this: increasing transport to a very fast rate or making the necessary proteins at the site, proximal to the growing axons. Smith believes that this form of growth commonly occurs in nature. "For example, it can be inferred that axons in a blue whale’s spine grow more than three centimeters a day and in a giraffe’s neck at two centimeters a day at peak growth."

The team also found that they had to condition the axons to grow in an extreme way. "Although they can handle enormous growth, you can’t just spring it on them," explains Bryan Pfister, PhD a post-doctoral fellow in Smith’s lab and coauthor of the study. "If we ramp up the stretch rate too fast, the axons will snap." From this the team surmises that in nature animals must grow at a metered pace, which allows for constant feedback and conditioning.

It has been well established that axons initially grow out from neurons and follow a chemical stimulus to connect with another neuron. However, once the axon has reached its target a relatively unknown form of stretch-growth must ensue as the animal grows. Mechanical changes in the growing brain, spine, and other bones are the starting point for natural stretch-growth in axons. "We know that it’s not tension on the neuron itself, but tension on the axon," says Smith. "It’s deformation, a pulling on the axon." At this point, it is unclear what receptors and cell signaling pathways are involved to get the process started, but from this and previous studies the investigators do report that the signal is from a mechanical stimulus along the length of the axon as opposed to a chemical stimulus. "The stretch is coming from the whole body growing," explains Smith. "For example, the growing spine bones in the whale likely exert mechanical forces on the axons in the spinal cord."

The researchers conclude that this is a genetic program for growth that has been conserved throughout animal species, but just hasn’t been studied in depth. By revealing the mechanisms of extreme-stretch growth, the team is currently applying this knowledge to develop nerve constructs to repair nerve and spinal cord damage. "To find that tension is actually good for your nerves for both growth and repair may not be such a long stretch," says Smith.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

European particle-accelerator community publishes the first industry compendium

26.04.2018 | Physics and Astronomy

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018 | Life Sciences

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>