Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calling GPs and stroke patients for research into constraint-induced movement therapy

08.09.2004


Traditional treatment of movement problems for people who have suffered traumatic brain injury or strokes has mainly focused on making the best use of motor functions the patient has retained. A team at the University of Surrey is now examining a method which focuses on improving the weaker arm of patients with upper body hemiparesis (hand/arm disability resulting from brain damage). Professor Annette Sterr and her Clinical Neuroscience Research Group are carrying out a five-year study into the practical clinical application of constraint-induced movement therapy (CIT) and the brain mechanisms thought to make the treatment successful. The study is funded by a £760k Career Establishment Grant from the Medical Research Council.



CIT was founded in the US by Professor Edward Taub. He demonstrated that if monkeys with a disabled upper limb had their stronger arm constrained for several consecutive days whilst training their disabled limb using a behavioural learning technique called ‘shaping’, they would regain some use of the disabled limb. Professor Taub then tried this treatment with stroke patients with reduced hand function, constraining their good arms for 90% of waking hours for two weeks, whilst their affected arms were shaped for six hours a day by performing increasingly difficult arm movements. All the patients showed a marked improvement.

Such research would not be viable in rehabilitation clinics, as they are not designed to see patients for such long periods, and the longer therapy sessions may be too strenuous for many stroke victims. The study aims to build on Professor Sterr’s previous work which achieved significant results using shorter training periods and without constraining the good arm. The project also aims to understand the brain mechanisms linked to CIT success by studying brain images with fMRI and recording electrical activity in the brain with EEG. Professor Sterr says: “We know that recovery from brain damage relies on the rewiring of brain circuits and that this process can be stimulated by the tasks you give your brain to do. It is believed that intensive training helps the regain of function by engaging neurons so new brain connections can be formed. By studying electrical activity and images of the brain before and after treatment we are able to test this theory”.


The study at UniS will test 112 volunteers who have limited movement in one side of their upper body following a brain injury or stroke at least 12 months previously. Each volunteer will undergo fMRI scans and EEG recordings before and after treatment. The fMRI scanner is a research-only scanner, which allows the team to look at the functioning of the brain, in addition to brain structure shown by MRI scanners.

One group of volunteers will receive standard CIT treatment, while in a further four groups the length of training will vary, as will the use of a constraint. Training will last for two or three weeks, with follow ups every six months for two years. Once back at home, the volunteers will be given a programme of tasks to practise every day.

Group research officer Amy Saunders recently spent three weeks at the University of Alabama studying with Professor Taub, and is now looking to recruit volunteers for the UniS study. Patients need to be low functioning and the approval of their GP will be sought before they can be considered for the study.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>