Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calling GPs and stroke patients for research into constraint-induced movement therapy

08.09.2004


Traditional treatment of movement problems for people who have suffered traumatic brain injury or strokes has mainly focused on making the best use of motor functions the patient has retained. A team at the University of Surrey is now examining a method which focuses on improving the weaker arm of patients with upper body hemiparesis (hand/arm disability resulting from brain damage). Professor Annette Sterr and her Clinical Neuroscience Research Group are carrying out a five-year study into the practical clinical application of constraint-induced movement therapy (CIT) and the brain mechanisms thought to make the treatment successful. The study is funded by a £760k Career Establishment Grant from the Medical Research Council.



CIT was founded in the US by Professor Edward Taub. He demonstrated that if monkeys with a disabled upper limb had their stronger arm constrained for several consecutive days whilst training their disabled limb using a behavioural learning technique called ‘shaping’, they would regain some use of the disabled limb. Professor Taub then tried this treatment with stroke patients with reduced hand function, constraining their good arms for 90% of waking hours for two weeks, whilst their affected arms were shaped for six hours a day by performing increasingly difficult arm movements. All the patients showed a marked improvement.

Such research would not be viable in rehabilitation clinics, as they are not designed to see patients for such long periods, and the longer therapy sessions may be too strenuous for many stroke victims. The study aims to build on Professor Sterr’s previous work which achieved significant results using shorter training periods and without constraining the good arm. The project also aims to understand the brain mechanisms linked to CIT success by studying brain images with fMRI and recording electrical activity in the brain with EEG. Professor Sterr says: “We know that recovery from brain damage relies on the rewiring of brain circuits and that this process can be stimulated by the tasks you give your brain to do. It is believed that intensive training helps the regain of function by engaging neurons so new brain connections can be formed. By studying electrical activity and images of the brain before and after treatment we are able to test this theory”.


The study at UniS will test 112 volunteers who have limited movement in one side of their upper body following a brain injury or stroke at least 12 months previously. Each volunteer will undergo fMRI scans and EEG recordings before and after treatment. The fMRI scanner is a research-only scanner, which allows the team to look at the functioning of the brain, in addition to brain structure shown by MRI scanners.

One group of volunteers will receive standard CIT treatment, while in a further four groups the length of training will vary, as will the use of a constraint. Training will last for two or three weeks, with follow ups every six months for two years. Once back at home, the volunteers will be given a programme of tasks to practise every day.

Group research officer Amy Saunders recently spent three weeks at the University of Alabama studying with Professor Taub, and is now looking to recruit volunteers for the UniS study. Patients need to be low functioning and the approval of their GP will be sought before they can be considered for the study.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>