Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken arms and collateral damage: clues to predator-driven evolution

06.09.2004


Ever since Darwin’s day, scientists have been trying to understand how interactions among living creatures---competition and predation, for example---drive evolution.



Recent work by paleontologists Tomasz Baumiller of the University of Michigan and Forest Gahn of the Smithsonian’s National Museum of Natural History offers new insights into the process. A report on their research appears in today’s issue of Science.

Biologists long have speculated that predators and prey play a game of evolutionary one-upsmanship, in which an adaptation on the part of one---say, sharper teeth in a predator---prompts a "go-you-one-better" response in the other---tougher hide in the prey, for instance. Hints that this has occurred are scattered throughout the fossil record, but not evenly, Baumiller said. During one part of the Paleozoic Era known as the Middle Paleozoic Marine Revolution, for example, the diversity of shell-crushing predators increased explosively. Around the same time, some 380 million years ago, mollusks and other shell-bearing marine animals developed better protective devices, such as more spines or more tightly-coiled shells.


Apparently, the prevalence of shell-crushers prompted development of better defenses against them. But simply finding evidence of changes in both predators and prey doesn’t prove that one caused the other, Baumiller noted. "You have to provide evidence that they, in fact, were interacting."

To search for such evidence, Baumiller and his former graduate student Gahn, studied fossil crinoids, a group of marine animals related to starfish and sea urchins. Crinoids, also called sea lilies, have feathery arms that they extend to catch bits of plankton or detritus passing by in the current.

Like their starfish cousins and other animals in the group known as echinoderms, crinoids are capable of regenerating lost body parts. Because modern day crinoids usually lose---and regenerate---their arms as a result of attacks by fish, Baumiller and Gahn reasoned that arm regeneration in fossil crinoids would be a good indicator of predator-prey interactions in the geologic past.

To test their idea, they examined more than 2,500 Paleozoic crinoids for evidence of arm regeneration, focusing on fossils from the Ordovician to Pennsylvanian Periods (490 to 290 million years ago). As predicted, they found that the only significant increase in regeneration frequency was during the Middle Paleozoic Marine Revolution. "Indeed, the frequency of regeneration, which we regard as a proxy for predation intensity, was low during intervals before the Middle Paleozoic Marine Revolution and then there was a sudden increase, coincident with the diversification of predators and the increase in the evolutionary response of the prey," Baumiller said.

That’s not the whole story, though. Baumiller and Gahn suspect that crinoids were not the intended targets of the predators that inflicted damage upon them, and that their broken arms were simply "collateral damage." Crinoids, Baumiller explained, play host to a variety of other organisms that take up residence on various parts of their bodies, and the predators were probably going after those creatures.

One way to test this notion would be to look for correlations between the degree of infestation and the rate of regeneration, and Baumiller, Gahn and Carlton Brett, a paleontologist from the University of Cincinnati, have applied for funding to do just that.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>