Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken arms and collateral damage: clues to predator-driven evolution

06.09.2004


Ever since Darwin’s day, scientists have been trying to understand how interactions among living creatures---competition and predation, for example---drive evolution.



Recent work by paleontologists Tomasz Baumiller of the University of Michigan and Forest Gahn of the Smithsonian’s National Museum of Natural History offers new insights into the process. A report on their research appears in today’s issue of Science.

Biologists long have speculated that predators and prey play a game of evolutionary one-upsmanship, in which an adaptation on the part of one---say, sharper teeth in a predator---prompts a "go-you-one-better" response in the other---tougher hide in the prey, for instance. Hints that this has occurred are scattered throughout the fossil record, but not evenly, Baumiller said. During one part of the Paleozoic Era known as the Middle Paleozoic Marine Revolution, for example, the diversity of shell-crushing predators increased explosively. Around the same time, some 380 million years ago, mollusks and other shell-bearing marine animals developed better protective devices, such as more spines or more tightly-coiled shells.


Apparently, the prevalence of shell-crushers prompted development of better defenses against them. But simply finding evidence of changes in both predators and prey doesn’t prove that one caused the other, Baumiller noted. "You have to provide evidence that they, in fact, were interacting."

To search for such evidence, Baumiller and his former graduate student Gahn, studied fossil crinoids, a group of marine animals related to starfish and sea urchins. Crinoids, also called sea lilies, have feathery arms that they extend to catch bits of plankton or detritus passing by in the current.

Like their starfish cousins and other animals in the group known as echinoderms, crinoids are capable of regenerating lost body parts. Because modern day crinoids usually lose---and regenerate---their arms as a result of attacks by fish, Baumiller and Gahn reasoned that arm regeneration in fossil crinoids would be a good indicator of predator-prey interactions in the geologic past.

To test their idea, they examined more than 2,500 Paleozoic crinoids for evidence of arm regeneration, focusing on fossils from the Ordovician to Pennsylvanian Periods (490 to 290 million years ago). As predicted, they found that the only significant increase in regeneration frequency was during the Middle Paleozoic Marine Revolution. "Indeed, the frequency of regeneration, which we regard as a proxy for predation intensity, was low during intervals before the Middle Paleozoic Marine Revolution and then there was a sudden increase, coincident with the diversification of predators and the increase in the evolutionary response of the prey," Baumiller said.

That’s not the whole story, though. Baumiller and Gahn suspect that crinoids were not the intended targets of the predators that inflicted damage upon them, and that their broken arms were simply "collateral damage." Crinoids, Baumiller explained, play host to a variety of other organisms that take up residence on various parts of their bodies, and the predators were probably going after those creatures.

One way to test this notion would be to look for correlations between the degree of infestation and the rate of regeneration, and Baumiller, Gahn and Carlton Brett, a paleontologist from the University of Cincinnati, have applied for funding to do just that.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>