Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken arms and collateral damage: clues to predator-driven evolution

06.09.2004


Ever since Darwin’s day, scientists have been trying to understand how interactions among living creatures---competition and predation, for example---drive evolution.



Recent work by paleontologists Tomasz Baumiller of the University of Michigan and Forest Gahn of the Smithsonian’s National Museum of Natural History offers new insights into the process. A report on their research appears in today’s issue of Science.

Biologists long have speculated that predators and prey play a game of evolutionary one-upsmanship, in which an adaptation on the part of one---say, sharper teeth in a predator---prompts a "go-you-one-better" response in the other---tougher hide in the prey, for instance. Hints that this has occurred are scattered throughout the fossil record, but not evenly, Baumiller said. During one part of the Paleozoic Era known as the Middle Paleozoic Marine Revolution, for example, the diversity of shell-crushing predators increased explosively. Around the same time, some 380 million years ago, mollusks and other shell-bearing marine animals developed better protective devices, such as more spines or more tightly-coiled shells.


Apparently, the prevalence of shell-crushers prompted development of better defenses against them. But simply finding evidence of changes in both predators and prey doesn’t prove that one caused the other, Baumiller noted. "You have to provide evidence that they, in fact, were interacting."

To search for such evidence, Baumiller and his former graduate student Gahn, studied fossil crinoids, a group of marine animals related to starfish and sea urchins. Crinoids, also called sea lilies, have feathery arms that they extend to catch bits of plankton or detritus passing by in the current.

Like their starfish cousins and other animals in the group known as echinoderms, crinoids are capable of regenerating lost body parts. Because modern day crinoids usually lose---and regenerate---their arms as a result of attacks by fish, Baumiller and Gahn reasoned that arm regeneration in fossil crinoids would be a good indicator of predator-prey interactions in the geologic past.

To test their idea, they examined more than 2,500 Paleozoic crinoids for evidence of arm regeneration, focusing on fossils from the Ordovician to Pennsylvanian Periods (490 to 290 million years ago). As predicted, they found that the only significant increase in regeneration frequency was during the Middle Paleozoic Marine Revolution. "Indeed, the frequency of regeneration, which we regard as a proxy for predation intensity, was low during intervals before the Middle Paleozoic Marine Revolution and then there was a sudden increase, coincident with the diversification of predators and the increase in the evolutionary response of the prey," Baumiller said.

That’s not the whole story, though. Baumiller and Gahn suspect that crinoids were not the intended targets of the predators that inflicted damage upon them, and that their broken arms were simply "collateral damage." Crinoids, Baumiller explained, play host to a variety of other organisms that take up residence on various parts of their bodies, and the predators were probably going after those creatures.

One way to test this notion would be to look for correlations between the degree of infestation and the rate of regeneration, and Baumiller, Gahn and Carlton Brett, a paleontologist from the University of Cincinnati, have applied for funding to do just that.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>