Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplant of pig tissue may reduce stroke size and damage

02.09.2004


A tiny capsule containing tissue that secretes a cocktail of brain-nourishing neurotrophic factors may one day help reduce the damage and disability of stroke, according to research published in the September issue of Stroke.



Choroid plexus tissue has innate roles in developing and protecting the brain and when additional tissue is transplanted into an animal model of stroke, it reduces stroke size by about 65 percent, Medical College of Georgia researchers report. "What we have seen is the reduction of the size of the stroke in the brain, and the animals that received the transplant showed functional recovery in motor as well as neurological function," said Dr. Cesario V. Borlongan, MCG neuroscientist and first author on the paper.

The study is an important step in moving the potential treatment to clinical trials because the porcine choroid plexus tissue also could be used in humans, Dr. Borlongan said. The cells of the pig choroid plexus are similar in size and function to human cells and pig brain tissue has been used in humans to treat Parkinson’s disease.


For the study, researchers put the pig tissue into biocompatible microcapsules before transplanting them into the rat stroke model. To objectively assess its effectiveness, they compared the results to an empty capsule as well as choroid plexus tissue without the capsule and no treatment. "We have seen in this study that choroid plexus alone, without any capsule, also can reduce stroke damage," said Dr. Borlongan. But they also found increased inflammation when the capsules – designed by LCTBioPharma, Inc., in Providence, R.I., a subsidiary of Living Cell Technologies based in New Zealand and Australia – were not used.

The capsules are designed to allow molecules, such as protective neurotrophic factors, to escape and keep out inflammatory factors that could trigger an immune response and rejection. And they could one day hold more than choroid plexus. "There are different therapies we can combine with this encapsulated therapy, including other substances such as stem cells to help replace brain cells that are lost," Dr. Borlongan said. "We are excited about the potential therapeutic benefits of the choroid plexus but we are moving cautiously toward the idea of using this approach in humans."

Dr. Borlongan published a similar study showing the benefit of rat-to-rat transplants in the May 2004 issue of NeuroReport. He also presented the rat studies as well as early findings on the pig-to-rat transplant studies at the May meeting of the American Society for Neural Transplantation and Repair.

For the Stroke paper, he completed parallel studies in culture that showed brain cells exposed to media collected from the encapsulated choroid plexus survived oxygen deprivation. Now he’s looking long-term at how the encapsulated versus "naked" tissue is tolerated in his animal model. Non-human primate studies will be needed as well before human trials can begin.

One obvious challenge of turning the laboratory findings into an actual new therapy is that the reparative benefits of choroid plexus likely work best immediately after a stroke; right now the Food and Drug Administration typically doesn’t allow invasive procedures immediately after a stroke unless patients are hemorrhaging and need surgery to stop bleeding. The only FDA-approved drug therapy to date in the hours immediately following a stroke resulting from a blood clot is intravenous infusion of the clot-dissolving drug, TPA. Invasive procedures can be used only for chronic stroke, patients who are severely sick, debilitated and not responding, Dr. Borlongan says.

That means any clinical trials likely would start with these chronic patients, who may also benefit. "We want to show first that it’s safe and second that it’s feasible, that when you transplant these cells into a patient, they won’t be rejected and the patient won’t show any detrimental side effects," Dr. Borlongan says, estimating that such studies are likely two years away.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>