Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full-body CT screening increases risk of cancer death

31.08.2004


The risk of cancer mortality from a single full-body computed tomography (CT) scan is modest, but not negligible, and the risks resulting from elective annual scans are much higher, according to a study published in the September issue of the journal Radiology.



The increasing popularity of elective, or self-referred, full-body CT screening has raised concerns regarding the radiation-related cancer mortality risk associated with full-body CT radiation exposure. Based on anecdotal evidence, these scans are performed on asymptomatic people to identify a variety of diseases, including colon and lung cancer and coronary artery disease.

"Our research provides definitive evidence that radiation risk is associated with full-body CT scans," said David J. Brenner, Ph.D., D.Sc., lead author of the study and professor of radiation oncology and public health at Columbia University in New York City. "The radiation dose from a full-body CT scan is comparable to the doses received by some of the atomic-bomb survivors from Hiroshima and Nagasaki, where there is clear evidence of increased cancer risk." The researchers studied low-dose A-bomb survivors, not high-dose survivors.


The researchers estimated cancer mortality risk associated with single and multiple full-body CT scans by comparing A-bomb cancer mortality data with the calculated effective radiation dose (weighted average over all relevant organs) from a full-body scan. The dose from a single full-body CT is only slightly lower than the mean dose experienced by groups of A-bomb survivors, in whom significant increases in cancer risk are seen. The effective dose of radiation delivered during a full-body CT exam is nearly 100 times that of a typical screening mammogram.

The study found that a 45-year-old person who underwent one full-body CT screening would have an estimated lifetime cancer mortality risk of approximately 0.08 percent, which would produce cancer in one in 1,200 people. However, a 45-year-old who has annual full-body CT scans for 30 years would accrue an estimated lifetime cancer mortality risk of about 1.9 percent or almost one in 50.

The report considered risk only for asymptomatic adults who elect to undergo high-tech checkups. "The risk-benefit equation changes dramatically for adults who are referred for CT exams for medical diagnosis. Diagnostic benefits far outweigh the risks," Dr. Brenner said.

The controversy surrounding elective full-body CT screening has been focused primarily on disease detection versus risk of false-positive findings, while neglecting the potential radiation risks associated with CT scans. CT delivers much larger radiation doses to the organs than do conventional x-rays.

"In addition to the radiation risks demonstrated in this report, elective full-body CT may provide false-positive findings when no disease exists," Dr. Brenner said. "This typically involves more extensive testing, which is costly and stressful." No studies have yet reported life-prolonging benefits to the procedure.

The risk from ongoing, elective CT screenings can be reduced by increasing the time between scans or by starting at a later age.

The researchers note that different CT scanners will produce different doses and, consequently, different risks. Full-body CT protocol is not standardized, so radiation exposure may vary among centers.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>