Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full-body CT screening increases risk of cancer death

31.08.2004


The risk of cancer mortality from a single full-body computed tomography (CT) scan is modest, but not negligible, and the risks resulting from elective annual scans are much higher, according to a study published in the September issue of the journal Radiology.



The increasing popularity of elective, or self-referred, full-body CT screening has raised concerns regarding the radiation-related cancer mortality risk associated with full-body CT radiation exposure. Based on anecdotal evidence, these scans are performed on asymptomatic people to identify a variety of diseases, including colon and lung cancer and coronary artery disease.

"Our research provides definitive evidence that radiation risk is associated with full-body CT scans," said David J. Brenner, Ph.D., D.Sc., lead author of the study and professor of radiation oncology and public health at Columbia University in New York City. "The radiation dose from a full-body CT scan is comparable to the doses received by some of the atomic-bomb survivors from Hiroshima and Nagasaki, where there is clear evidence of increased cancer risk." The researchers studied low-dose A-bomb survivors, not high-dose survivors.


The researchers estimated cancer mortality risk associated with single and multiple full-body CT scans by comparing A-bomb cancer mortality data with the calculated effective radiation dose (weighted average over all relevant organs) from a full-body scan. The dose from a single full-body CT is only slightly lower than the mean dose experienced by groups of A-bomb survivors, in whom significant increases in cancer risk are seen. The effective dose of radiation delivered during a full-body CT exam is nearly 100 times that of a typical screening mammogram.

The study found that a 45-year-old person who underwent one full-body CT screening would have an estimated lifetime cancer mortality risk of approximately 0.08 percent, which would produce cancer in one in 1,200 people. However, a 45-year-old who has annual full-body CT scans for 30 years would accrue an estimated lifetime cancer mortality risk of about 1.9 percent or almost one in 50.

The report considered risk only for asymptomatic adults who elect to undergo high-tech checkups. "The risk-benefit equation changes dramatically for adults who are referred for CT exams for medical diagnosis. Diagnostic benefits far outweigh the risks," Dr. Brenner said.

The controversy surrounding elective full-body CT screening has been focused primarily on disease detection versus risk of false-positive findings, while neglecting the potential radiation risks associated with CT scans. CT delivers much larger radiation doses to the organs than do conventional x-rays.

"In addition to the radiation risks demonstrated in this report, elective full-body CT may provide false-positive findings when no disease exists," Dr. Brenner said. "This typically involves more extensive testing, which is costly and stressful." No studies have yet reported life-prolonging benefits to the procedure.

The risk from ongoing, elective CT screenings can be reduced by increasing the time between scans or by starting at a later age.

The researchers note that different CT scanners will produce different doses and, consequently, different risks. Full-body CT protocol is not standardized, so radiation exposure may vary among centers.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>