Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESC Congress 2004: Embryonic endothelial progenitor cells help overcome myocardial infarction in pigs

31.08.2004


Myocardial infarction, caused by coronary artery occlusion, can lead up to loss of muscle tissue of the heart and functional detriment, even at times where rapid reperfusion strategies like PTCA or thrombolysis are at hand. In the study presented here, we investigated embryonic endothelial progenitor cells as therapy for ischemia reperfusion injury in a large animal model (pig). This model, which induces an infarct of predictable size in a pig heart, was used to test the cardioprotective potential of the embryonic cells, since adult endothelial progenitor cells (EPCs) have been used in similar models with success and are utilized in ongoing patient studies.

Endothelial progenitor cells are cells which are able to differentiate into endothelial cells and replace the inner vascular wall.In this study, we used 5x106 embryonic endothelial progenitor cells, a number relatively modest with respect to the size of the targeted infarct region. To compensate for this modest cell number, we used a regional delivery system, called retroinfusion, which infuses the cells through the vein draining the infarct region. (Previous studies had shown a substantial increase of efficacy using this application mode).
We now found that indeed retroinfusion of 5x106 embryonic EPCs sufficed to reduce infarct size and improve regional myocardial function in the ischemic area. Interestingly, systemic application of the same number of cells had no significant effect, indicating the relevance of the regional application. The superiority of the regional delivery was confirmed in tests using radioactively labeled cells, where retroinfusion yielded a sixfold higher amount of recruited cells in the heart than systemic application.


Currently, embryonic EPCs are an experimental tool trying to investigate the pathways utilized by these cells to protect the ischemic heart. A variety of efforts is underway to characterize the embryonic EPCs further and to potentially enhance their performance. Because of species differences, it is unclear whether a similar approach can be used in patients.

However, a similar cell line might be derived from human embryonic stem cells, and become a helpful tool for ischemia/reperfusion injury of the heart in the future. C Kupatt (Munich, DE)

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>