Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High tech implants to aid facial reconstruction to be developed at Loughborough University

27.08.2004


Loughborough University researchers have been awarded more than £200,000 to develop state-of-the-art tailor made implants for people requiring facial reconstructive surgery.



The Department of Health’s ‘New and Emerging Applications of Technology’ (NEAT) funding programme has awarded the University £234,761 for the 2 year project, which is being led by Dr Russell Harris of the Wolfson School of Mechanical and Manufacturing Engineering.

The aim of the work is to research and develop a technique that will provide the rapid and direct manufacture of tailor made implants for bone replacement and tissue growth. The project could help a wide range of people, including victims of bone disease, oral cancer, congenital defects and traumatic injuries.


Patients currently requiring reconstructive surgery may have to wait several weeks for a customised implant to be made. This is because, with conventional manufacturing techniques, implants have to be moulded, cut, or formed, which is time consuming and costly. These conventional techniques also impose geometrical restrictions on the shapes that can be produced and means the fit and placement of implants may be compromised.

The implant production method being investigated by Dr Harris is called Laser Sintering, which belongs to a family of techniques known as Rapid Prototyping (RP). The use of RP allows physical parts to be created immediately, directly and automatically from a 3D representation, known as a 3D computer-aided-design (CAD) model. It works by breaking down a 3D model into 2D sections which are built up layer by layer by high tech machines. In Laser Sintering the 2D layers are built up by selectively binding powder particles together using a laser in just a few hours.

Data from CT or MRI scans of facial injuries are utilised to create a 3D model of the required implant. This means that the implant would be tailor made to fit exactly to a patient’s requirements in terms of shape, performance and integration into existing structures within the body, using data collected by non-intrusive scans.

The new implants would be made from a mixture of a polymer and a bioactive ceramic. Bioactive ceramics are used for bone implants and tissue scaffolds due to their ability to bond with natural bone. An important such material, hydroxyapatite, can be combined with polymers to form a material with appropriate stiffness, toughness and bioactivity for use in the body.

Dr Harris said: “The requirement for bone replacement/reconstruction due to traumatic injury or radical surgery has, of course, long been required by patients. And materials have now been developed that are capable of bonding with natural bone to allow such repair. “Through research and development these materials could be harnessed with a high tech but established production technique for the direct, quick, custom manufacture of bone implants that will integrate themselves within the body, and require only one surgical operation. This new technique would reduce patient distress; patient risk; operative procedures; costs and waiting times, whilst increasing implant performance.

“The realisation of such implant production techniques would revolutionize the application and possible treatment routes for the immediate and long term benefit of patients, clinicians and healthcare providers.”

Dr Harris will be working with several other organisations on the project, including Queen Mary University of London, University College London and the Facial Surgery Research Foundation, Saving Faces.

Judy Smyth | alfa
Further information:
http://www.lboro.ac.uk
http://www.lboro.ac.uk/service/publicity/news-releases/2004/04_93_bone_implants.html

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>