Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High tech implants to aid facial reconstruction to be developed at Loughborough University

27.08.2004


Loughborough University researchers have been awarded more than £200,000 to develop state-of-the-art tailor made implants for people requiring facial reconstructive surgery.



The Department of Health’s ‘New and Emerging Applications of Technology’ (NEAT) funding programme has awarded the University £234,761 for the 2 year project, which is being led by Dr Russell Harris of the Wolfson School of Mechanical and Manufacturing Engineering.

The aim of the work is to research and develop a technique that will provide the rapid and direct manufacture of tailor made implants for bone replacement and tissue growth. The project could help a wide range of people, including victims of bone disease, oral cancer, congenital defects and traumatic injuries.


Patients currently requiring reconstructive surgery may have to wait several weeks for a customised implant to be made. This is because, with conventional manufacturing techniques, implants have to be moulded, cut, or formed, which is time consuming and costly. These conventional techniques also impose geometrical restrictions on the shapes that can be produced and means the fit and placement of implants may be compromised.

The implant production method being investigated by Dr Harris is called Laser Sintering, which belongs to a family of techniques known as Rapid Prototyping (RP). The use of RP allows physical parts to be created immediately, directly and automatically from a 3D representation, known as a 3D computer-aided-design (CAD) model. It works by breaking down a 3D model into 2D sections which are built up layer by layer by high tech machines. In Laser Sintering the 2D layers are built up by selectively binding powder particles together using a laser in just a few hours.

Data from CT or MRI scans of facial injuries are utilised to create a 3D model of the required implant. This means that the implant would be tailor made to fit exactly to a patient’s requirements in terms of shape, performance and integration into existing structures within the body, using data collected by non-intrusive scans.

The new implants would be made from a mixture of a polymer and a bioactive ceramic. Bioactive ceramics are used for bone implants and tissue scaffolds due to their ability to bond with natural bone. An important such material, hydroxyapatite, can be combined with polymers to form a material with appropriate stiffness, toughness and bioactivity for use in the body.

Dr Harris said: “The requirement for bone replacement/reconstruction due to traumatic injury or radical surgery has, of course, long been required by patients. And materials have now been developed that are capable of bonding with natural bone to allow such repair. “Through research and development these materials could be harnessed with a high tech but established production technique for the direct, quick, custom manufacture of bone implants that will integrate themselves within the body, and require only one surgical operation. This new technique would reduce patient distress; patient risk; operative procedures; costs and waiting times, whilst increasing implant performance.

“The realisation of such implant production techniques would revolutionize the application and possible treatment routes for the immediate and long term benefit of patients, clinicians and healthcare providers.”

Dr Harris will be working with several other organisations on the project, including Queen Mary University of London, University College London and the Facial Surgery Research Foundation, Saving Faces.

Judy Smyth | alfa
Further information:
http://www.lboro.ac.uk
http://www.lboro.ac.uk/service/publicity/news-releases/2004/04_93_bone_implants.html

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>