Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High tech implants to aid facial reconstruction to be developed at Loughborough University


Loughborough University researchers have been awarded more than £200,000 to develop state-of-the-art tailor made implants for people requiring facial reconstructive surgery.

The Department of Health’s ‘New and Emerging Applications of Technology’ (NEAT) funding programme has awarded the University £234,761 for the 2 year project, which is being led by Dr Russell Harris of the Wolfson School of Mechanical and Manufacturing Engineering.

The aim of the work is to research and develop a technique that will provide the rapid and direct manufacture of tailor made implants for bone replacement and tissue growth. The project could help a wide range of people, including victims of bone disease, oral cancer, congenital defects and traumatic injuries.

Patients currently requiring reconstructive surgery may have to wait several weeks for a customised implant to be made. This is because, with conventional manufacturing techniques, implants have to be moulded, cut, or formed, which is time consuming and costly. These conventional techniques also impose geometrical restrictions on the shapes that can be produced and means the fit and placement of implants may be compromised.

The implant production method being investigated by Dr Harris is called Laser Sintering, which belongs to a family of techniques known as Rapid Prototyping (RP). The use of RP allows physical parts to be created immediately, directly and automatically from a 3D representation, known as a 3D computer-aided-design (CAD) model. It works by breaking down a 3D model into 2D sections which are built up layer by layer by high tech machines. In Laser Sintering the 2D layers are built up by selectively binding powder particles together using a laser in just a few hours.

Data from CT or MRI scans of facial injuries are utilised to create a 3D model of the required implant. This means that the implant would be tailor made to fit exactly to a patient’s requirements in terms of shape, performance and integration into existing structures within the body, using data collected by non-intrusive scans.

The new implants would be made from a mixture of a polymer and a bioactive ceramic. Bioactive ceramics are used for bone implants and tissue scaffolds due to their ability to bond with natural bone. An important such material, hydroxyapatite, can be combined with polymers to form a material with appropriate stiffness, toughness and bioactivity for use in the body.

Dr Harris said: “The requirement for bone replacement/reconstruction due to traumatic injury or radical surgery has, of course, long been required by patients. And materials have now been developed that are capable of bonding with natural bone to allow such repair. “Through research and development these materials could be harnessed with a high tech but established production technique for the direct, quick, custom manufacture of bone implants that will integrate themselves within the body, and require only one surgical operation. This new technique would reduce patient distress; patient risk; operative procedures; costs and waiting times, whilst increasing implant performance.

“The realisation of such implant production techniques would revolutionize the application and possible treatment routes for the immediate and long term benefit of patients, clinicians and healthcare providers.”

Dr Harris will be working with several other organisations on the project, including Queen Mary University of London, University College London and the Facial Surgery Research Foundation, Saving Faces.

Judy Smyth | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>