Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High tech implants to aid facial reconstruction to be developed at Loughborough University

27.08.2004


Loughborough University researchers have been awarded more than £200,000 to develop state-of-the-art tailor made implants for people requiring facial reconstructive surgery.



The Department of Health’s ‘New and Emerging Applications of Technology’ (NEAT) funding programme has awarded the University £234,761 for the 2 year project, which is being led by Dr Russell Harris of the Wolfson School of Mechanical and Manufacturing Engineering.

The aim of the work is to research and develop a technique that will provide the rapid and direct manufacture of tailor made implants for bone replacement and tissue growth. The project could help a wide range of people, including victims of bone disease, oral cancer, congenital defects and traumatic injuries.


Patients currently requiring reconstructive surgery may have to wait several weeks for a customised implant to be made. This is because, with conventional manufacturing techniques, implants have to be moulded, cut, or formed, which is time consuming and costly. These conventional techniques also impose geometrical restrictions on the shapes that can be produced and means the fit and placement of implants may be compromised.

The implant production method being investigated by Dr Harris is called Laser Sintering, which belongs to a family of techniques known as Rapid Prototyping (RP). The use of RP allows physical parts to be created immediately, directly and automatically from a 3D representation, known as a 3D computer-aided-design (CAD) model. It works by breaking down a 3D model into 2D sections which are built up layer by layer by high tech machines. In Laser Sintering the 2D layers are built up by selectively binding powder particles together using a laser in just a few hours.

Data from CT or MRI scans of facial injuries are utilised to create a 3D model of the required implant. This means that the implant would be tailor made to fit exactly to a patient’s requirements in terms of shape, performance and integration into existing structures within the body, using data collected by non-intrusive scans.

The new implants would be made from a mixture of a polymer and a bioactive ceramic. Bioactive ceramics are used for bone implants and tissue scaffolds due to their ability to bond with natural bone. An important such material, hydroxyapatite, can be combined with polymers to form a material with appropriate stiffness, toughness and bioactivity for use in the body.

Dr Harris said: “The requirement for bone replacement/reconstruction due to traumatic injury or radical surgery has, of course, long been required by patients. And materials have now been developed that are capable of bonding with natural bone to allow such repair. “Through research and development these materials could be harnessed with a high tech but established production technique for the direct, quick, custom manufacture of bone implants that will integrate themselves within the body, and require only one surgical operation. This new technique would reduce patient distress; patient risk; operative procedures; costs and waiting times, whilst increasing implant performance.

“The realisation of such implant production techniques would revolutionize the application and possible treatment routes for the immediate and long term benefit of patients, clinicians and healthcare providers.”

Dr Harris will be working with several other organisations on the project, including Queen Mary University of London, University College London and the Facial Surgery Research Foundation, Saving Faces.

Judy Smyth | alfa
Further information:
http://www.lboro.ac.uk
http://www.lboro.ac.uk/service/publicity/news-releases/2004/04_93_bone_implants.html

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>