Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Technique Shows Lymph Nodes, Metastases in Breast Cancer

25.08.2004


Breast cancer tends to progress to nearby lymph nodes, but surgeons can find it difficult to determine what tissue to remove with the breast tumor and what to leave intact. National Cancer Institute researchers hope to change that.



“Our advance is that we have a non-invasive method that may minimize surgical trauma,” says the team’s leader, Martin Brechbiel, Ph.D. “At the least, surgeons can acquire a set of images and have a feel, a road map if you will, for what they need to do before the [surgical] procedure begins. Ultimately the technology could have the potential to replace surgery, though that’s not proven yet.”

Brechbiel reported the technique, which uses magnetic resonance imaging and a novel MRI agent, for the first time at the 228th national meeting of the American Chemical Society, the world’s largest scientific society. The pharmaceutical chemist is looking to step up from mouse studies to Phase I clinical trials.


One in seven women will develop breast cancer, according to the American Cancer Society’s 2004 report of cancer statistics. Closely tied to deciding the best approach for the tumor’s removal — a lumpectomy is now the most common — is determining whether and how much of neighboring tissue may also contain cancer cells.

That’s a question surgeons can now rarely answer until the patient is on the operating table and they can probe her lymph tissue directly. And although their decision strongly impacts her chances for cancer recovery and survival, even direct inspection can render it less than clear.

Which node is the sentinel, closest in flow from the breast? Which in line after that should be the last to take? “Also, lymphatic vessels are not always easy just to find. They’re not like bone or a major organ,” Brechbiel points out.

The NCI research has the potential not only to reduce doubt but also to remove much of the decision itself from the operating room. Brechbiel proposes, and has the preliminary data to support, an approach that would send the woman first to the MRI center, where a technician would inject the new imaging agent. Its chemical properties would then light up, in real time, the flow of lymph from breast through lymph vessels to nodes under the arm.

“You can actually watch the filling of nodes from the tumor,” Brechbiel says, referring to observations he and his team have made in transgenic mice. “Some will light up very early, others later. And then you can also reconstruct the data into a three-dimensional image, and rotate it for a three-dimensional road map. The surgeon can know how a patient’s lymph tissue is constructed even before surgical intervention begins.”

Brechbiel’s technique could save time on the operating table, inflict less trauma and possibly even diagnose cancerous nodes as well as delineate the local lymph network. “Cancerous cells can block normal filling of the node, and when that happens you can spot the aberration in flow,” he says.

The imaging agent itself is also new. Other MRI compounds are small molecules, but the NCI group instead has developed a series of dendrimer complexes to carry the magnetic signal. Some of these elaborate scaffolds of polymer each hold a remarkable 256 ions of gadolinium, a rare-earth metal and common magnetic signal in MRI. Dendrimers give a stronger signal even when adjusted for their high molecular weight, and a crisper image because their bulkiness keeps them from leaking through vessel walls.

Having taken the work this far, NCI is now looking for an industrial partner to carry it to clinical trials. Meanwhile, a paper on the research has been accepted for publication later this year by the peer-reviewed Journal of the National Cancer Institute.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 159,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

The paper on this research, INOR 347, will be presented at 2:30 p.m., Monday, Aug. 23, 2004, at the Pennsylvania Convention Center, 108B, during the symposium, “The Chemistry of Biological Molecular Imaging.”

Martin Brechbiel, Ph.D., is section chief of the Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch of the National Cancer Institute in Bethesda, Md.

| newswise
Further information:
http://www.acs.org

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>