Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tumor-fighting Ability in Popular Breast Cancer Drug

25.08.2004


For many patients with advanced breast cancer, the cancer drug Herceptin (trastuzumab) has offered new hope when traditional cancer drugs failed to work, shrinking tumors and sending some patients into remission.



Now Dihua Yu, M.D., Ph.D., and her colleagues at The University of Texas M. D. Anderson Cancer Center have uncovered a powerful new cancer-fighting property of Herceptin, an antibody-based drug that targets a protein on breast cancer cells called HER-2 (also called ErbB2). The discovery explains why some HER-2 positive patients don’t respond as well to the drug and also offers a potential solution that could allow more HER-2 positive patients to benefit from the treatment.

The study, which appears in the August 2004 issue of the journal Cancer Cell, demonstrates that the presence of a protein called PTEN in HER-2 positive patients’ tumor cells is a powerful predictor of who will respond to Herceptin. In normal cells, the PTEN protein helps control cell division, but in about half of breast tumors PTEN levels are very low or the protein is completely missing. Those PTEN-missing tumors did not respond to Herceptin treatment.


“Our goal is to allow doctors to quickly and accurately tailor cancer treatment to each individual patient,” says Yu, professor of surgical oncology, and the study’s principal investigator. “Tailored treatment means giving each patient the medication most likely to benefit her, while simultaneously minimizing side effects.”

In a recent clinical trial at M. D. Anderson, 65 percent of HER-2 positive patients taking Herceptin in addition to chemotherapy had a complete response rate, compared to 26 percent taking chemotherapy alone. But doctors have had no way to predict who among HER-2-positive patients, which account for about one-third of all breast cancer patients, is most likely to benefit.

“Previously, it was known that Herceptin binds to the HER-2 protein and causes it to degrade,” says Yu. “But this process takes days. What we found is that very quickly, within ten minutes of administration, Herceptin activates PTEN, a powerful tumor suppressor gene. We are adding a very new understanding of how Herceptin works.”

The scientists studied the tumors of 47 metastatic HER-2 positive breast cancer patients who had received Herceptin and chemotherapy as well as 37 patients who received chemotherapy alone. PTEN levels varied widely among both groups, but only 11 percent of patients who had a very low level of PTEN responded to Herceptin, versus 66 percent of those with high levels of PTEN. There was no correlation between PTEN level and response to traditional chemotherapy agents called taxanes.

“Our results show PTEN is a very powerful predictor of who will respond to Herceptin,” says Yu.

Breast cancer patients whose tumors make too much of the HER-2 protein are at much greater risk of metastasis because the HER-2 protein stimulates cells to grow and spread aggressively. When Herceptin attaches to the HER-2 protein, it interrupts those growth signals, which are sent through a series of signaling proteins inside the cell. PTEN acts as a natural brake on tumor growth by, among other things, blocking the effect of a growth promoting protein called PI3K.

Yu and her colleagues discovered that if they administered a drug that turns off PI3K in breast cancer cells in the laboratory, they became much more sensitive to the effects of Herceptin. The PI3K inhibitor mimicked the action of PTEN and restored the ability of Herceptin to slow or stop the growth of cancer cells.

Yu pointed out that there are several experimental PI3K inhibitors currently in clinical trials for treatment of breast cancer that, if they prove to be safe, could potentially be combined with Herceptin to boost its effectiveness in PTEN-missing breast cancers.

“In the past we looked for patients’ HER-2 expression, and if HER-2 was high we gave them Herceptin,” says Yu. “In the future, when patients come to M. D. Anderson we will look for patients with high levels of HER-2 and PTEN expression and these are the patients that we expect will benefit most from Herceptin. For those with low PTEN, we hope to be able to offer combination therapy with a PI3K inhibitor that might work synergistically to boost the effectiveness of Herceptin.”

Yu says she and her colleagues in the Breast Medical Oncology Department are planning a clinical trial to be conducted at M. D. Anderson in which they would test each patient for HER-2 and PTEN proteins and offer targeted treatment based on the level of each protein.

“There has been a need to develop new markers that can improve the efficacy of Herceptin,” says Francisco Esteva, M.D., Ph.D., an associate professor in the Department of Breast Medical Oncology. “This is one of the first studies that allows us to understand the mechanism of Herceptin resistance and offers a potential way to counteract it.”

“In the past, selecting a particular chemotherapy drug has been a lottery,” says Yu. “Patients had no way of knowing if they would benefit. The new generation of cancer drugs is providing targeted treatment with fewer side effects and giving patients a better chance that a particular treatment will work for them.”

The study was funded by grants from the National Institutes of Health and M. D. Anderson Cancer Center. Yu’s co-authors include Yoichi Nagata, M.D., Ph.D.; Keng-Hsueh Lan, M.D.; Xiaoyan Zhou; Ming Tan, M.D., Ph.D.; Esteva; Aysegul A. Sahin, M.D.; Kristine S. Klos, Ph.D.; Ping Li; Nina T. Nguyen; Gabriel N. Hortobagyi, M.D. and Mien-Chie Hung, Ph.D. of M. D. Anderson; and Brett P. Monia of ISIS Pharmaceuticals.

| newswise
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>