Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UV light, coatings reduce bacterial adhesion up to 50 percent


The combination of ultraviolet (UV) light and certain coatings can lower -- by 15 to 50 percent -- the ability of some types of bacteria to stick to a glass surface and cause contamination or biofouling, Penn State environmental engineers have found.

Dr. Baikun Li, assistant professor of environmental engineering, Penn State Harrisburg, says "Ultraviolet light has been used for many years as an environmentally friendly route to water disinfection. However, these new results indicate that ultraviolet light, combined with certain coatings, also may offer a ’green’ approach to keeping glass surfaces free of contamination."

Li described her results in a paper, "The Impact of Ultraviolet Light on Bacterial Adhesion to Glass and Metal-Oxide Coated Surfaces," at the American Chemical Society meeting, Sunday, Aug. 22, in Philadelphia. Her co-author is Dr. Bruce Logan, the Kappe professor of environmental engineering, Penn State’s University Park campus.

The Penn State researcher exposed flat glass surfaces (silica dioxide) coated with thin layers of silicon dioxide, titanium dioxide or tin dioxide to eight different strains of bacteria, including some disease-causing types, and two different wavelengths of UV light. Measurements showed that the lower wavelength UVC light (254 nm) lowered cell adhesion by 15 to 50 percent, depending on the type of bacteria, on both the titanium dioxide and tin dioxide coated surfaces. The higher wavelength UVA light (340nm) produced similar effects for glass coated with titanium dioxide but not with tin dioxide. Higher intensity light reduced adhesion more than lower intensity UV light.

Li says, "Our work is among the first studies of the combination of ultraviolet light and coatings to prevent biofouling. These early results are promising and suggest potential for further study and anti-biofouling application."

Barbara Hale | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>