Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Your Knees And Quads Hurt More After Running Than Walking: You’re Only Human

24.08.2004


Your knees take the brunt of the increased demands on your lower body in terms of the amount of muscle mass used and joint flexion when you compare walking to running. By a lot. Why? Because you’re human.



Though humans share a lot of qualities with other mammals, we are unique in terms of posture, locomotion and gait. (In fact, we’re among the only two-legged mammals who walk and run.) For instance, horses consume about the same amount of energy to cover a mile when running or walking, while humans consume substantially more energy when they run than when they walk.

But with our unique patterns of limb kinematics, a group of scientists wanted to study exactly how that affects how we use our muscles while walking and running, and to better understand why it’s more “efficient” to walk than to run.


Harvard research finds five-fold increase in knee torque, muscle force

The researchers, most of whom at one time were graduate students of the late C. Richard Taylor at Harvard University, filmed four healthy males walking and running at six self-selected speeds. They measured vertical force on the ground and velocity as the subjects chose “slow,” “preferred” and “fast” speeds for both running and walking.

They found that with an increase of speed and gait, the maximum muscle force increased steadily at the hip, remained fairly constant at the ankle, but increased sharply at the knee when the subjects changed from a walk to a run. In most instances (except for the hip at a run), they found that limb muscles were primarily acting to generate force on the ground and the muscle’s role in overcoming inertia and gravity was minimal.

Results of the research are reported in a paper entitled “Muscle mechanical advantage of human walking and running: implications for energy cost,” which is online at the Journal of Applied Physiology, one of 14 peer-reviewed journals published by the American Physiological Society.

Lead author Andrew A. Biewener is at Department of Organismic and Evolutionary Biology at Harvard University, Boston; Claire T. Farley is at the Dept. of Integrative Physiology at the University of Colorado, Boulder; Thomas J. Roberts was at the Dept. of Zoology, Oregon State University, Corvallis; and Marco Temaner is at the Dept. of Organismal Biology & Anatomy, University of Chicago, Illinois. Since completion of the paper, Thomas Roberts has moved to Brown University.

Change in posture while running reduces mechanical advantage

Since the knees are more bent during running than during walking, the researchers found that the amount of force generated by the knee extensors (quadriceps muscles) rose almost 5-fold when walking humans broke into a run, a somewhat confusing idea for the non-expert. These high forces generated by the knee extensors cause running to be aerobically more demanding than walking. Consider this example: when a person tries to stand with their knees bent to around 90°, their quads fatigue very rapidly. In contrast, if they stand with their legs straight, they don’t notice any fatigue in their quads. This is similar to the running vs. walking differences. In running, the knee is much more bent when the foot is on the ground than in walking. For this reason, the quads generate much higher forces during running and consume much more energy.

The study identifies this single difference between walking and running as playing an important role in causing running to be less economical than walking. The researchers note that it’s not the entire reason, but it’s important.

By contrast to the knee extensors, the ankle and hip extensors don’t have a large change in posture or force generation at the gait transition, so the energy consumption by those muscle groups doesn’t increase substantially at the gait transition. Due to the contrast between the knee extensors and the other limb muscle groups, they identified the high forces generated by knee extensors as the primary reason for the high energy cost of running.

The researchers also looked at the active muscle volume needed to generate force on the ground, and here, too, the knee extensors sprung way past the hip and ankle. Whereas all three joints increased the active muscle volume as speed increased and gait changed, the knee extensors increased 4.9-fold during running (to 49% of the three extensor groups combined, vs. 23% at a walk). This compared with a 1.77-fold increase for the hip extensors (to 36% of the aggregate total while running, from 46% walking) and a 1.10-fold increase for ankle extensors (way down to 16% of the total while running from 36% at a walk).

They warn, however, that “the interacting effects of increased muscle recruitment but decreased activation duration on energy cost, when humans increase speed and change gait from a walk to a run, remains an important challenge to sort out.”

The researchers conclude that “greater energy cost during running in humans may be explained in part by the decrease in limb mechanical advantage results from the use of more flexed knee joint during running versus walking [and speculate that this] may reflect the evolution of a unique erect bipedal gait within hominids which distinguishes modern humans from avian bipeds and mammalian quadrupeds.”

Source and funding: The article, “Muscle mechanical advantage of human walking and running: implications for energy cost,” is online in the Journal of Applied Physiology, published by the American Physiological Society. A copy of the abstract is available to the public at www.the-aps.org.

This study was supported by NSF grant IBN-930763 and NIH grants AR-046499 and AR-047679.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>