Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decreasing toxins in brains of Alzheimer’s patients keep cognitive deficits at bay

23.08.2004


The ever-slowing capacity to clear the build-up of such toxins as isoprostanes and misfolded proteins that accumulate in the brains of Alzheimer’s disease patients causes the death of cells involved in memory and language. Domenico Pratico, MD, Associate Professor of Pharmacology at the University of Pennsylvania School of Medicine, and colleagues have shown in a preliminary study that reducing the levels of isoprostanes, which specifically reflect oxidative damage in the brain, by draining cerebral spinal fluid (CSF) can stave off future reductions in cognitive abilities. This work appears in the August issue of the Journal of Alzheimer’s Disease.



As measured by a paper-and-pencil cognitive test, the researchers found that scores of the eight patients who had the specially designed shunt continuously operating for one year stayed stable. However, the scores of patients who did not get the shunt declined by 20 percent after 12 months. "What’s interesting is that the patients without the shunt didn’t stop taking their regular Alzheimer medication, such as anti-cholinesterase," says Pratico.

Over 12 months, the isoprostanes were reduced by about 50 percent compared to Alzheimer’s patients taking standard anti-Alzheimer oral medications alone. "We were very happy to see this amount of reduction," says Pratico, who adds that the research team predicted reductions only half that size. Additionally, the normal components of CSF like glucose and immunoglobulins did not change after the shunt was placed in patients. The shunt has a selective capacity to filter out toxins of a specific molecular weight and size, in this case isoprostanes.


Applying a treatment for hydrocephalus to Alzheimer’s disease, the microns-wide shunt, or catheter, is placed subcutaneously in a space at the base of the cerebellum. It runs under the skin to the peritoneum, a space in the belly where body fluids accumulate before flowing to the kidney to be filtered and eventually eliminated in the urine. The shunt is put in once, drains continuously, and is cleaned out periodically by a neurologist.

The eight patients still have their shunts and there are now almost 100 patients recruited into the next phase of the study, which is being conducted at Stanford University. Other collaborators on this paper are: Yuemang Yao from Penn; Joshua Rokach, Florida Institute of Technology; Gerald G. Silverberg, Stanford University School of Medicine; Martha Mayo and Dawn McGuire, University of California, San Francisco Medical Center and Enroe Inc. This study was funded in part by the Alzheimer’s Association. Pratico has no financial interest in Enroe Inc.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.uphs.upenn.edu/news

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>