Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New compound could give some types of cancer the one-two punch


Ohio State University researchers are working on developing a multi-purpose cancer drug that might one day scale back the number of medications some cancer patients need to take.

In laboratory tests, a dual-action compound called OSU 111 has shown promise in killing prostate cancer cells. "It had a direct toxic effect on cancer cells, and also prevented angiogenesis – the formation of new blood vessels from pre-existing ones," said Tom Li, the study’s lead investigator and an associate professor of pharmacy at Ohio State. "It’s like using one stone to kill two birds."

Li presented the results on August 22 in Philadelphia at the summer meeting of the American Chemical Society.

OSU 111 is a variation on a theme – Li and his colleagues created OSU 111 using a known anti-cancer compound, SU-5416, as a model. Although SU-5416 showed promise in preclinical studies, it did not have the kind of far-reaching effectiveness that researchers had hoped for.

But SU-5416 does provide a good blueprint by which researchers can create dozens of analogs – compounds structurally similar, but with slightly different chemical compositions. "We’ve made close to 50 different analogs by modifying SU-5416," Li said.

Laboratory experiments show that OSU 111 is one of the most promising analogs for killing cancer cells Li’s team has found so far. When treated with OSU 111 in laboratory experiments, the majority of prostate cancer tissue cells died within three days, Li said. "This compound stopped cell division in its tracks," he said.

OSU 111 induces apoptosis – cell suicide – in cancer cells because it keeps key structures called microtubules from working during cell division. Microtubules distribute chromosomes to new cells. OSU 111 also prevents tumor cells from forming new blood vessels.

Scientists are looking for alternatives to established anti-cancer drugs, such as Taxol, which is used to kill cancer cells in ovarian, breast and lung tissue. Drugs like Taxol come from natural sources, and supplies are sometimes extremely limited. Also, synthetic versions of these drugs can be very difficult to make.

Providing a drug with more than one effect could also benefit cancer patients who are inundated with medications.

"Many clinical trials that test new cancer treatments use a combination of drugs – one to prevent the growth of new blood vessels, for example, and another to keep cancer cells from dividing and spreading," Li said. "One drug with dual activity means that the body only has to deal with a single compound, and that could eliminate a lot of complexity in terms of giving medication to patients, the body’s ability to absorb a drug and also side effects.

"We want to find a drug with a dual purpose," he continued. "Angiogenesis is very prominent in many cancers, particularly prostate cancer. Pure anti-angiogenic compounds haven’t been that successful; somehow cancer cells still find a way to form blood vessels."

Li and his colleagues are continuing to look for even more potent analogs based on the structure of SU-5416. "We’re developing small, easy-to-make compounds that are similar to established drugs, but hopefully much easier to come by," he said.

Li conducted this work with Ohio State colleagues Bulbul Pandit, Zhigen Hu, Zili Xiao and Christine Cheah; and Dan Sackett, of the Laboratory of Integrative and Medical Biophysics at the National Institute of Child Health and Human Development.

Tom Li | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>