Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of compounds promises to revive failing hearts

23.08.2004


Nitroxyl-releasing drugs seem to strengthen cardiac contractions, relaxation in conscious dogs

Half a million Americans are diagnosed each year with heart failure, a progressively debilitating condition characterized by the heart’s declining ability to pump blood efficiently. The condition causes about 50,000 deaths annually and accounts for 1 million hospitalizations – more than for all forms of cancer combined.
Since the 1980s, nitroglycerin and other medications that release nitric oxide (NO) into the bloodstream have been the usual approach to treating this condition. Though these drugs benefit the ailing heart by improving its ability to relax, they also have a negative flipside: they leave the heart with a diminished capacity for pumping.


Hoping to improve on that formula, researchers at The Johns Hopkins University have developed a new class of NO-based compounds called nitroxyl (HNO) precursors that produce HNO. In early studies, these compounds seem to play a role in protecting the cardiovascular system from further damage during heart failure and in restoring function to organs affected by the debilitating condition. Scientists will announce their results in late August at the American Chemical Society’s annual summer meeting, held this year in Philadelphia.

"Our results are preliminary, but very promising," said John P. Toscano, professor in the Chemistry Department in the Krieger School of Arts and Sciences at Johns Hopkins. "Our goal is not only to develop new classes of nitroxyl precursors, but also to figure out the mechanisms by which they seem to affect heart function. This has the potential to lead to alternative treatments for cardiac failure in humans. But we are still in the very early testing stage."

Toscano’s research partner, Nazareno Paolocci, assistant professor in the Department of Cardiology at The Johns Hopkins School of Medicine, administered normal, conscious dogs and those with heart failure with a compound called Angeli’s salt, which generates HNO. It turned out that this treatment doubled the dogs’ hearts’ ability to pump and enhanced their ability to relax between contractions -- a promising development.

"Our previous work in collaboration with Dr. David A Kass (of Johns Hopkins) and Dr. David A Wink (of the National Cancer Institute) has shown that nitroxyl donors appear to be very good candidates to treat failing hearts that are characterized by pressure overload, poor contractile function and delayed relaxation. Moreover, these compounds can be successfully combined with other drugs used in heart failure patients, namely, beta-blockers," Paolocci said.

Essentially all physiological studies probing the effects of nitroxyl have used Angeli’s salt as a donor of that substance, prompting Toscano’s team to set to work to develop new sources. New nitroxyl donors not only would confirm that the physiological effects seen with Angeli’s salt are truly due to HNO, but they also would help researchers determine if the rate of HNO release had any effect on the resulting physiological response.

"One of the main reactions of nitroxyl is dimerization – that is, the reaction of one HNO molecule with another – which is dependent on the local concentration," Toscano said. "So, compounds that release HNO at faster rates generate higher initial concentrations of it and therefore may result in HNO being consumed by the dimerization reaction, rather than being available to elicit the desired physiologic response."

So far, Toscano’s team has cultivated one class of compounds based on the reaction of certain secondary amines with nitric oxide to form compounds called diazeniumdiolates, which traditionally are NO donors, but have been turned into HNO donors by Toscano’s team.

Paolocci and his team have tested two of these derivatives – one a pure HNO donor, which behaves similarly to Angeli’s salt and one a pure NO donor, which behaves analogously to standard NO donors – on dogs to assess their cardiovascular action.

"We’re very optimistic with what we have seen so far," Toscano said. "This looks promising. We know that NO is an important biological molecule, and we are just beginning to learn that HNO may, in potentially very different ways, be just as important."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>